Rank Matriks Atas Ring

Yuliyanti Dian, Pratiwi and Miftah Sigit, Rahmawati and Nana, Fitria and Sri, Wahyuni (2011) Rank Matriks Atas Ring. Matematika dan Pedidikan Karakter dalam Pembelajaran. ISSN 978-979-16353-6-3

[img]
Preview
Text
a-18.pdf

Download (400kB) | Preview
Official URL: http://www.uny.ac.id

Abstract

Dalam artikel ini akan dibahas rank matriks atas ring yang merupakan generalisasi dari rank matriks atas lapangan. Sudah diketahui, bahwa pada rank matriks atas lapangan salah satu cara mencari rank menggunakan metode eliminasi Gauss dengan menggunakan operasi baris atau kolom elementer, sehingga diperoleh basis dari ruang kolom atau ruang baris matriks tersebut. Dimensi dari ruang kolom atau ruang baris matriks tersebut dikenal sebagai rank matriks atas lapangan. Misalkan A ∈ Mmxn(R) dengan R ring komutatif dengan elemen satuan, maka akan diperoleh submodul yang dibangun oleh kolom-kolom matriks A, dan juga diperoleh submodul yang dibangun oleh baris-baris matriks A. Akan tetapi submodul-submodul tersebut belum tentu mempunyai basis. Dengan demikian, tidak dapat didefinisikan rank matriks A tersebut sebagai dimensi dari submodul-submodul tersebut. Sebagai akibatnya rank matriks atas ring tersebut tidak dapat dihitung menggunakan cara operasi baris elementer atau operasi kolom elementer. Mengingat rank matriks atas lapangan juga dapat dilihat dari nilai minor matriks A yang tidak nol, dalam artikel ini akan dicoba didefinisikan rank matriks atas ring melalui pendekatan ideal yang dibangun oleh minor-minor t × t dari matris A atas ring R matriks tersebut. Mengingat ring R juga dapat membagi nol, maka dalam pendefinisian rank matriks atas R pendekatan dilakukan dengan menggunakan pengenolnya yakni jika I adalah suatu ideal maka pengenol (Annihilator) dari I didefinisikan sebagai himpunan AnnRI x R|r.x 0, x I. Dalam artikel ini diperoleh pendefinisian rank matriks atas ring R sebagai berikut rank (A) = max t|AnnRItA 0 dengan ItA didefinisikan sebagai ideal yang dibangun oleh semua minor-minor berukuran t × t dari matris A. Selanjutnya ditunjukkan bahwa pendefinisian ini tidak bertentangan jika diaplikasikan pada matriks atas lapangan. Kata kunci : rank matriks atas lapangan, ideal, dan annihilator

Item Type: Article
Uncontrolled Keywords: rank matriks atas lapangan, ideal, dan annihilator
Subjects: Prosiding > Seminar Nasional Matematika dan Pendidikan Matematika 2011
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika > Pendidikan Matematika
Depositing User: Sarwo Hadi ꦱꦼꦠꦾꦤ
Date Deposited: 07 Nov 2012 02:57
Last Modified: 07 Nov 2012 02:57
URI: http://eprints.uny.ac.id/id/eprint/7283

Actions (login required)

View Item View Item