Relasi Kongruensi Fuzzy pada Grup dan Grup Hasil Bagi

Karyati, (2007) Relasi Kongruensi Fuzzy pada Grup dan Grup Hasil Bagi. Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA 2007. ISSN 978-979-99314-2-9

[img]
Preview
Text
M-13.pdf

Download (92kB) | Preview
Official URL: http://fmipa.uny.ac.id

Abstract

Subhimpunan fuzzy μ pada himpunan X adalah suatu pemetaan dari X ke interval [ 0, 1 ] . Definisi ini adalah generalisasi dari himpunan klasik dengan pemetaannya didefinisikan dari himpunan tersebut ke himpunan { 0, 1 } . Pada himpunan klasik didefinisikan suatu relasi ,relasi refleksif, simetrik, transiftif, similaritas dan kongruensi. Selanjutnya dikonstruksi definisi relasi biner fuzzy yang refleksif, simetrik, transitif, similaritas dan kongruensi . Dalam tulisan ini akan diberikan contoh-contoh relasi kongruensi pada sebarang grup dan grup hasil baginya. Diperoleh hasil bahwa: Misalkan G adalah grup dengan elemen idenitasnya e dan μ adalah subgrup fuzzy pada G . Didefinisikan suatu relasi β pada G × G dipetakan ke interval [ 0, 1 ] sebagai berikut: β (a, b) = min{ μ ( a), μ (b)} , jika a ≠ b dan β ( a, b) = μ (e) jika a = b maka β adalah relasi kongruensi fuzzy pada G × G . Selanjutnya dibangun suatu pemetaan λ : G H → [ 0, 1 ] , yang didefinisikan λ ( xH ) = β ( x, h) untuk setiap h∈H . Terbukti bahwa λ adalah relasi kongruensi fuzzy. Pemetaan α , dari G × G ke interval [ 0, 1 ] , yang didefnisikan α ( xH , yH ) = λ( xHy −1 H ) . H H Terbukti juga bahwa α adalah relasi kongruensi fuzzy. Kata Kunci: subgrup fuzzy, subgrup hasil bagi fuzzy , subgrup normal fuzzy, relasi kongruensi fuzzy

Item Type: Article
Uncontrolled Keywords: subgrup fuzzy, subgrup hasil bagi fuzzy , subgrup normal fuzzy, relasi kongruensi fuzzy
Subjects: Prosiding > Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA 2007
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika
Depositing User: Eprints
Date Deposited: 13 Feb 2015 07:10
Last Modified: 13 Feb 2015 07:10
URI: http://eprints.uny.ac.id/id/eprint/12063

Actions (login required)

View Item View Item