eprintid: 79330
rev_number: 9
eprint_status: archive
userid: 1290
dir: disk0/00/07/93/30
datestamp: 2023-11-01 03:46:23
lastmod: 2023-11-01 03:46:23
status_changed: 2023-11-01 03:46:23
type: thesis
metadata_visibility: show
creators_name: Ramadhan, M Firman
creators_name: Mundilarto, Mundilarto
title: Pengembangan Model Blended Learning Berbantuan Interface Experiment Instrument System (IEIS) untuk Meningkatkan Keterampilan Praktik dan Berpikir Kritis Mahasiswa Pendidikan Fisika.
ispublished: pub
subjects: D4
subjects: F2
divisions: pps_ip
full_text_status: restricted
keywords: berpikir kritis, blended learning, IEIS, keterampilan praktik
abstract: Perkembangan pendidikan fisika sebagai bidang ilmu pendidikan dan sains mengalami perubahan yang sangat pesat. Pemanfaatan teknologi digital dapat membantu mendukung perubahan tersebut, terutama dalam mengatasi keterbatasan sarana dan prasarana laboratorium. Kegiatan di laboratorium memberikan kesempatan kepada mahasiswa untuk menggunakan pengetahuan dan konsep fisika dalam melaksanakan keterampilan praktik dan keterampilan berpikir kritis. Inovasi yang dilakukan masih kurang dalam kegiatan eksperimen dengan memanfaatkan interaksi perangkat lunak dan perangkat keras. Kegiatan pembelajaran yang menggunakan interaksi perangkat lunak dan perangkat keras belum mengarah pada aktivitas model blended learning. Terkait dengan itu, penelitian bertujuan untuk menghasilkan model blended learning berbantuan IEIS dan perangkat pendukungnya yang (1) layak, (2) memiliki dampak terhadap keterampilan praktik dan berpikir kritis, dan (3) praktis digunakan.
Penelitian ini menggunakan metode penelitian dan pengembangan yang mengadopsi model 4D (define, design, develop, dan diseminate). Pada tahap define, dilakukan pengumpulan melalui survei, literatur, observasi. Pada tahap design, dilakukan pengumpulan data melalui penyusunan instrumen, pemilihan format/materi, dan desain awal model blended learning berbantuan IEIS. Pada tahap develop, dilakukan pengumpulan data melalui penilaian ahli, ujicoba terbatas, dan ujicoba lapangan yang bertujuan untuk mendapatkan kelayakan model. Pada tahap disseminate, dilakukan sosialisasi melalui pelatihan dan pemanfaatan model pada mahasiswa, dosen, dan sosialisasi pada masyarakat melalui surat kabar dan jurnal terindeks Scopus. Ujicoba terbatas dilakukan pada tahun ajaran 2021/ 2022 yang melibatkan 18 mahasiswa, ujicoba lapangan dilakukan pada 22 mahasiswa, dan uji lapangan diperluas dilakukan pada 15 mahasiswa kelompok eksperimen dan 18 mahasiswa kelompok kontrol. Data yang dikumpulkan terdiri dari data kualitatif dan data kuantitatif.
Hasil penelitian ini adalah sebagai berikut. (1) Model blended learning berbantuan IEIS yang dihasilkan sangat layak digunakan. (2) Model pembelajaran blended learning berbantuan IEIS yang dikembangkan dapat meningkatkan keterampilan praktik dan berpikir kritis mahasiswa pendidikan fisika. (3) Model blended learning berbantuan IEIS yang dikembangkan masuk kategori sangat praktis.
date: 2023-08-08
date_type: published
institution: Sekolah Pascasarjana
department: Ilmu Pendidikan
thesis_type: disertasi
referencetext: Abdulhak, I. & Darmawan, D. (2013). Teknologi pendidikan. Bandung: PT. Remaja Rodakarya.
Abdullah, N. S. Y., Saufi, M. N. S., & Yaacob, M. I. H. (2018). Microcomputer- based laboratory (MBL) system with automated measuring approach for basic electronics. Journal of Fundamental and Applied Sciences, 10(3S), 87- 96. https://doi.org/10.4314/jfas.v10i3s.8
Abungu, H. E., Okere, M. I.O., & Wachanga, S. W. (2014). The effect of science process skills teaching approach on secondary school students’ achievement in chemistry in Nyando district, Kenya. Journal of Educational and Social Research, 4(6). https://doi.org/10.5901/jesr.2014.v4n6p359
Adeyemo, S. A. (2010). The need for skill development/acquisition in science, technology and mathematics education (STEME) in Nigeria. Journal of Science and Technology Education Research, vol. 1(1), pp. 1 – 9. Available online at http://www.academicjournals.org/jster
Afandi, Sajidan, Akhyar, M., & Suryani, N. (2018). A framework of integrating environmental science courses based to 21st century skills standards for prospective science teachers. American Institute of Physics, 020032. https://doi.org/10.1063/1.5054436
Ahmad, D. N., Karim, A., Zulkarnain, I., Ati, A. P., & Nusantari, D. O. (2021). Analysis creative thinking ability and scientific communication in HOTS learning using whatsapp media. UPINCASE, Journal of Physics: Conference Series, 1823, 1-9. https://doi.org/10.1088/1742-6596/1823/1/012074
Ahmad, T., & Sheikh, A. (2021). Impact of information and communication technologies (ICT) on student’s learning: a case from university of the punjab, pakistan. Digital Library Perspectives, Emerald Publishing Limited 2059- 5816. https://doi.org/10.1108/DLP-03-2021-0027
Ahmed, A. S., Yassine, K., Mohamed, M., Youness, A., & Ahmed, F. (2017). Remote-controlledlaboratoriesofexperimentalphysics:Measuring the stiffness of a spring. Transactions on Machine Learning and Artificial Intelligence, 5(4), 231-239. https://doi.org/10.14738/tmlai.54.3187
Akbar, M. N., Firman, H., & Rusyati, L. (2017). Developing science virtual test to measure students’ critical thinking on living things and environmental sustainability theme. IOP Conf. Series: Journal of Physics: Conf. Series 812, 012106, 1 – 8. https://doi.org/10.1088/1742-6596/812/1/012106
        368
Aktamiş, H., Hiğde, E., & Özden, B. (2016). Effects of the inquiry-based learning method on students’ achievement, science process skills and attitudes towards science: A meta-analysis science. Journal of Turkish Science Education, 13 (4), 248 – 261. https://doi.org/10.12973/tused.10183a
Ambarwati, D. & Suyatna, A. (2018). Interactive design for self-study and developing students’ critical thinking skills in electromagnetic radiation topic. IOP Conf. Series: Journal of Physics: Conf. Series, 948, 012039. https://doi.org/10.1088/1742-6596/948/1/012039
Amiti, F. (2020). Synchronous and asynchronous e-learning. European Journal of Open Education and e-learning Studies, 5 (2), 60 – 70. https://doi.org/10.46827/ejoe.v5i2.3313
Amos, N. & Heckler, A. F. (2018). Mediating relationship of differential products in understanding integration in introductory physics. Physical Review Physics Education Research, 14, 010105, 1 – 10. https://doi.org/10.1103/PhysRevPhysEducRes.14.010105
Andersson, J. & Enghag, M. (2017). The relation between students’ communicative moves during laboratory work in physics and outcomes of their actions. International Journal of Science Education, 39 (2), 1 - 23. https://doi.org/10.1080/09500693.2016.1270478
Andreatos, A. (2015). Cultivating the 21st century skills in the microcontrollers lab. Proceedings of EDEN 2015 Open Clasroom Conference, Hungary, 978-615- 5511-06-6
Ansori, I. & Rusdiana, D. (2015). Effect of contextual laboratory method on science process skills. Proceeding International Seminar on Mathematics, Science, and Computer Science Education, Indonesia, 29, 987–602–95549–2–2.
Apino, E. & Retnawati, H. (2017). Developing instructional design to improve mathematical higher order thinking skills of students. Journal of Physics: Conference Series, 812, 1 – 7. https://doi.org/10.1088/1742- 6596/812/1/012100
Ardianti, S., Sulisworo, D., Pramudya, Y., & Raharjo, W. (2020). The impact of the use of STEM education approach on the blended learning to improve student's critical thinking skills. Universal Journal of Educational Research, 8(3B), 24-32. https://doi.org/10.13189/ujer.2020.081503
Arduino. (2018). Arduino. Diakses dari https://www.arduino.cc/
Arends, R. I. (2012). Learning to teach, ninth edition. New York: McGraw-Hill.
         369

Arribas, E., Escobar, I., Suárez, C. P., Nájera, A., & Beléndez, A. (2015). Measurement of the magnetic field of small magnets with a smartphone: A very economical laboratory practice for introductory physics courses. European Journal of Physics, 36(6), 1-11. https://doi.org/10.1088/0143X0807/36/6/065002
Ashasi-Sorkhabi, A., Malekghasemi, H., & Mercan, O. (2015). Implementation and verification of real-time hybrid simulation (RTHS) using a shake table for research and education. Journal of Vibration and Control, 21(8) 1459–1472. https://doi.org/0.1177/1077546313498616
Asosiasi Program Studi Pendidikan Fisika LPTK PTM. (2016). Rumusan profil lulusan dan capaian pembelajaran. Surakarta: Asosiasi LPTK Perguruan Tinggi Muhammadiyah (ALPTK PTM) bekerjasama dengan Muhammadiyah University Press (MUP).
Asraf, H. M., Dahlila, K. A. N., Yusof, Z. M., Faiz, Z. A. A., & Nooritawati, M. T. (2018). Computer assisted e-laboratory using labview and internet of things platform as teaching aids in the industrial instrumentation course. International Journal of Online and Biomedical Engineering (iJOE), 14(12), 26-42. https://doi.org/10.3991/ijoe.v14i12.8992
Auer, M. E., Azad, A. K.M., Edwards, A., & de Jong, T. (2018). Cyber-physical laboratories in engineering and science education. Switzerland: Springer International Publishing AG
Aydoğdu, B. (2015). The investigation of science process skills of science teachers in terms of some variables. Educational Research and Reviews, 10(5), 582- 594. https://doi.org/10.5897/ERR2015.2097
Azeiteiro, U. M., Bacelar-Nicolau, P., Caetano, F. J. P. , & Caeiro, S. (2014). Education for sustainable development through e-learning in higher education: Experiences from Portugal. Journal of Cleaner Production, xxx, 1 – 12. https://doi.org/10.1016/j.jclepro.2014.11.056
Badan Pengembangan dan Pembinaan Bahasa. Kamus besar bahasa indonesia. Retrieved 2 Mei, 2023, from https://kbbi.kemdikbud.go.id/entri/kelayakan
Bahytovna, U. I., Nurullaevich, B. A., Meirbekovich, B. K., & Chozhankizi, S. A. (2014). Electronic resources in physics as a means of formation applied orientation of students. Procedia - Social and Behavioral Sciences, 116, 4310 – 4314. https://doi.org/10.1016/j.sbspro.2014.01.938
Balta, N., Mason, A. J., & Singh, C. (2016). Surveying turkish high school and university students’ attitudes and approaches to physics problem solving.
       370

Physical Review Physics Education Research, 12 (1), 1 - 16. https://doi.org/10.1103/PhysRevPhysEducRes.12.010129
Banday, M. T., Ahmed, M., & Jan, T. R. (2014). Applications of e-learning in engineering education: A case study. Procedia - Social and Behavioral Sciences, 123, 406 – 413. https://doi.org/10.1016/j.sbspro.2014.01.1439
BAN-PT. (2018). Direktori hasil akreditasi program studi. Diakses dari http://banpt.or.id/direktori/prodi/pencarian_prodi.php
Basham, J. D., Smith, S. J., & Satter, A. L. (2016). Universal design for learning: Scanning for alignment in K–12 blended and fully online learning materials. Journal of Special Education Technology, Vol. 31(3) 147-155. https://doi.org/10.1177/0162643416660836
Bassham, G., Irwin, W., Nardone, H., & Wallace, J. M. (2011). Critical thinking: A student’s introduction - 4th ed. New York: The McGraw-Hill Companies, Inc.
Belland, B. R., Walker, A. E., Ju Kim, N., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87(2), 309 – 344. https://doi.org/10.3102/0034654316670999
Berns, R. S. (2019). Principles of color technology, Fourth Edition. John Wiley & Sons Inc.: USA
Bernhardt, P. E. (2015). 21st century learning: Professional development in practice. The Qualitative Report, 20 (1), 1 – 19. http://www.nova.edu/ssss/QR/QR20/1/bernhardt1.pdf
Bicen, H., Ozdamli, F. & Uzunboylu, H. (2014). Online and blended learning approach on instructional multimedia development courses in teacher education. Interactive Learning Environments, 22(4), 529–548. https://doi.org/10.1080/10494820.2012.682586
Bishop, R. H. (2015). Learning with labview. New Jersey: Pearson Education, Inc Bluman, A. G. (2018). Elementary statistics: A step by step approach, tenth edition.
New York: McGraw-Hill Education
Boelens, R., Wever, B. De, & Voet, M. (2017). Four key challenges to the design of blended learning: A systematic literature review. Educational research review, 22, 1-18. https://doi.org/10.1016/j.edurev.2017.06.001
        371

Borish, V., Werth, A., Sulaiman, N., Fox, M. F. J., Hoehn, J. R., & Lewandowski, H. J. (2022). Undergraduate student experiences in remote lab courses during the COVID-19 pandemic. Physical Review Physics Education Research, American Physical Society, 18(2), 1-26. https://doi.org/10.1103/PhysRevPhysEducRes.18.020105
Boxall, J. (2013). Arduino workshop: A hands-on introduction with 65 projects. San Francisco: No Starch Press, Inc
Boysen, G. A., Richmond, A. S., & Gurung, R. A. R. (2015). Model teaching criteria for psychology: Initial documentation of teachers’ self-reported competency. Scholarship of Teaching and Learning in Psychology, 1(1), 48 – 59. https://doi.org/10.1037/stl0000023
Broisin, J., Venant, R., & Vidal, P. (2015). Lab4CE: A remote laboratory for computer education. International Journal of Artificial Intelligence in Education, 27 (1), 154-180. https://doi.org/10.1007/s40593-015-0079-3
Brophy, J. (2004). Motivating students to learn, second edition. New Jersey: Lawrence Erlbaum Associates, Inc.
Bruno, I., Santos, L., & Costa, N. (2016). The way students’ internalize assessment criteria on inquiry reports. Studies in Educational Evaluation, 51, 55–66. https://doi.org/10.1016/j.stueduc.2016.09.002
Budiastra, A. A. K., Hartinawati, H., Ichwan, I., & Erlina, N. (2021). The effectiveness of blended learning for new generation learning materials to train science process skills. SAR Journal, 4 (2), 63 – 71. https://doi.org/10.18421/SAR42-04
Buning, J., Fokkema, D., Kuik, G., & Dreef, T. (2018). Open inquiry experiments in physics laboratory courses. Dalam Sokołowska, D. & Michelini, M., The role of laboratory work in improving physics teaching and learning (95-105). Switzerland: Springer Nature Switzerland AG.
Buran, A. & Evseeva, A. (2015). Prospects of blended learning implementation at technical university. Procedia - Social and Behavioral Sciences, 206 (2015), 177 – 182. https://doi.org/10.1016/j.sbspro.2015.10.049
Butterworth, J., & Thwaites, G. (2013). Thinking skills: Critical thinking and problem solving second edition. Cambridge: Cambridge University Press.
Bybee, R. W. (2010). The teaching of science: 21st-century perspectives. United States of America: The National Science Teachers Association.
      372

Cabeza, C., Rubido, N., & Martı, A. C. (2014). Learning physics in a water park. Physics Education, 49 (2), 187 – 194. https://doi.org/10.1088/0031- 9120/49/2/187
Cahill, M. J., McDaniel, M. A., Frey, R. F., Hynes, K. M., Repice, M., Zhao, J., & Trousil, R. (2018). Understanding the relationship between student attitudes and student learning. Physical Review Physics Education Research, 14, 010107. https://doi.org/10.1103/PhysRevPhysEducRes.14.010107
Cai, S., Liu, C., Wang, T., Liu, E., & Liang, J.-C. (2021). Effects of learning physics using augmented reality on students’ self-efficacy and conceptions of learning. British Journal of Educational Technology, 25(1), 235–251. https://doi.org/10.1111/bjet.13020
Călinoiu, D., Ionel, R., Lascu, M., & Cioablă, A. (Oktober 2014). Arduino and labview in educational remote monitoring applications. Makalah disajikan dalam seminar 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, di Madrid, Spain. https://doi.org/10.1109/FIE.2014.7044027
Caminero, A. C., Hernandez, R., Tobarra, L., & Granjo, P. J. T. (2016). VirTUal remote laboratories management system (TUTORES): Using cloud computing to acquire university practical skills. IEEE Transactions on Learning Technologies, 9(2), 133 – 145. https://doi.org/10.1109/TLT.2015.2470683
Can, Ş., Aksay, E. Ç., & Orhan, T. Y. (2015). Investigation of pre-service science teachers’ attitudes towards laboratory safety. Procedia - Social and Behavioral Sciences, 174, 3131 – 3136. https://doi.org/10.1016/j.sbspro.2015.01.1051
Careaga-Butter, M., Badilla-Quintana, M. G., & Fuentes-Henríquez, C. (2020). Critical and prospective analysis of online education in pandemic and post- pandemic contexts: Digital tools and resources to support teaching in synchronous and asynchronous learning modalities. Aloma, 38(2), 23-32. https://doi.org/10.51698/aloma.2020.38.2.23-32
Cassidy, D., Holton, G., & Rutherford, J. (2002). Understanding physics student guide. USA: Springer-Verlag New York, Inc.
Çetin, A. & Özdemir, O. F. (2018). Mode-method interaction: The role of teaching methods on the effect of instructional modes on achievements, science process skills, and attitudes towards physics. EURASIA Journal of Mathematics, Science and Technology Education, 14(5), 1815-1826. https://doi.org/10.29333/ejmste/85217
         373

Chaeruman, U. A. (2018). Panduan memilih dan menentukan seting belajar dalam merancang pembelajaran blended. Program Studi Teknologi Pendidikan Pascasarjana, Universitas Negeri Jakarta. Jakarta: UNJ
Chen, J., Zhou, J., Sun, Li., Wu, Q., Lu, H., & Tian, J. (2015). A new approach for laboratory exercise of pathophysiology in china based on student-centered learning. American Physiological Society, Adv Physiol Educ (39), 116–119. https://doi.org/10.1152/advan.00143.2014
Chen, S., Lo, Hao-Chang., Lin, Jing-Wen, Liang, Jyh-Chong., Chang, Hsin-Yi., Hwang, Fu-Kwun., Chiou, Guo-Li., Wu, Ying-Tien., Lee, S. Wen-Yu., Wu, Hsin-Kai., Wang, Chia-Yu., & Tsai, Chin-Chung. (2012). Development and implications of technology in reform-based physics laboratories. Physical Review Special Topics - Physics Education Research, 8, 1 - 12. https://doi.org/10.1103/PhysRevSTPER.8.020113
Chien, Kuei-Pin., Tsai, Cheng-Yue., Chen, Hsiu-Ling., Chang, Wen-Hua., & Chen, S. (2014). Learning differences and eye fixation patterns in virtual and physical science laboratories. Computers & Education, 82, 191 - 201. https://doi.org/10.1016/j.compedu.2014.11.023
Chin, W. Ai., Yahaya Wan A. J. Wan, & Muniandy, B. (2018). Virtual science laboratory (ViSLab): The effect of visual signalling principles towards students’ perceived motivation. International Journal of Engineering & Technology, 7(3.30), 289-292. https://doi.org/10.14419/ijet.v7i3.30.18262
Chini, J. J., Madsen, A., Gire, E., Rebello, N. S., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics - Physics Education Research, 8, 010113. https://doi.org/10.1103/PhysRevSTPER.8.010113
Chini, J. J. Straub, C. L., & Thomas, K. H. (2016). Learning from avatars: Learning assistants practice physics pedagogy in a classroom simulator. Physical Review Physics Education Research, 12, 010117, 1 - 17. https://doi.org/10.1103/PhysRevPhysEducRes.12.010117
Chiu, Yu-Li., Lin, Tzung-Jin. & Tsai, Chin-Chung. (2016). The conceptions of learning science by laboratory among university science-major students: qualitative and quantitative analyses. Research in Science & Technological Education, 34 (3), 1- 19. https://doi.org/10.1080/02635143.2016.1222518
       374

Choiriyah, Mayuni, I. & Dhieni, N. (2022). The effectiveness of multimedia learning for distance education toward early childhood critical thinking during the COVID-19 pandemic. European Journal of Educational Research, 11(3), 1553-1568. https://doi.org/10.12973/eu-jer.11.3.1555
Choque, N. M. S., Dávila, L. Y. A. , da Silva, W. L., & da Rocha, A. S. (2017). How construct a wlan multi-data acquisition system based on the integration of arduino and ni-labview platforms for Educational applications. Revista Desafios, 04 (04), 117 – 125. https://doi.org/10.20873/uft.2359- 3652.2017v4n4p117
Choy, S. H., Jim, K. L., Mak, C. L., & Leung, C. W. (2017). Remote-controlled optics experiment for supporting senior high school and undergraduate teaching. 14th Conference on Education and Training in Optics and Photonics, 10452, 1 – 11. https://doi.org/10.1117/12.2266253
Cioc, I. B., Oprea, S., Visan, D. A., Lita, I., & Lita, A. I. (Mei 2016). Remote measurements in educational laboratories using labview and DAQ cards. Makalah ini disajikan dalam seminar 39th International Spring Seminar on Electronics Technology (ISSE), di Pilsen, Czech Republic. https://doi.org/10.1109/ISSE.2016.7563246
Cleveland-Innes, M. & Wilton, D. (2018). Guide to blended learning. Kolombia: Commonwealth of Learning.
Cohen, M. (2015). Critical thinking skills for dummies. United Kingdom: John Wiley & Sons, Ltd.
Cohen, S., Zimmermann, P. G., & Marshall, J. (2007). Critical thinking in the pediatric unit: Skills to assess, analyze, and act. United States of America: HCPro, Inc.
Colthorpe, K., Abraha, H. M., Zimbardi, K., Ainscough, L., Spiers, J. G., Chen, Hsiao-Jou C., & Lavidis, N. A. (2017). Assessing students’ ability to critically evaluate evidence in an inquiry-based undergraduate laboratory course. The American Physiological Society, 41, 154 – 162. https://doi.org/10.1152/advan.00118.2016
Copriady, J. (2014). Teachers competency in the teaching and learning of chemistry practical. Mediterranean Journal of Social Sciences, 5(8), 312 – 318. https://doi.org/10.5901/mjss.2014.v5n8p312
Coppens, P., den Bossche, J. V., & De Cock, M. (2016). Video observation as a tool to analyze and modify an electronics laboratory. Physical Review Physics
       375

Education Research, 12, 020121, 1 – 18. https://doi.org/10.1103/PhysRevPhysEducRes.12.020121
Cotfas, P. A., Cotfas D. T., Ursutiu, D., & Samoila, C. (2012). Ni elvis computer based instrumentation. USA: National Technology and Science Press.
Cottle, N. R. & Glover, R. J. (2011). Teaching human development: A case for blended learning. Teaching of Psychology, 38(3) 205-208. https://doi.org/10.1177/0098628311411900
Cottrell, S. (2005). Critical thinking skills: Developing effective analysis and argument. New York: Palcrave Macmillan.
Crawford, A., Saul W., & Mathews, S. R. (2005). Teaching and learning strategies for the thinking classroom. New York: The International Debate Education Association.
Creswell, J. W. (2014). Educational research: Planning, conducting and evaluating quantitative and qualitative research, fourth edition. The United States of America: Pearson Education Limited.
Culkin, J. & Hagan, E. (2017). Make: Learn electronics with arduino - an illustrated beginner’s guide to physical computing learn electronics with arduino. San Francisco: Maker Media, Inc
Daineko, Y., Dmitriyev, V., & Ipalakova, M. (2016). Using virtual laboratories in teaching natural sciences: An example of physics courses in university. Wiley Periodicals, Inc. Comput Appl Eng Educ, 25, 39 – 47. https://doi.org/10.1002/cae.21777
Darmaji, D., Kurniawan, D. A., & Irdianti, I. (2019a). Physics education students’ science process skills. International Journal of Evaluation and Research in Education (IJERE), 8(2), 293 – 298. https://doi.org/10.11591/ijere.v8i2.28646
Darmaji, D., Kurniawan, D. A., Astani, Lumbantoruan, A., & Samosir, S. C. (2019b). Mobile learning in higher education for the industrial revolution 4.0: Perception and response of physics practicum. International Journal of Interactive Mobile Technologies (iJIM), 13 (9), 1 – 20. https://doi.org/10.3991/ijim.v13i09.10948
Demircioglu, T. & Ucar, S. (2015). Investigating the effect of argument-driven inquiry in laboratory instruction. Educational Sciences: Theory & Practice, 15(1), 267-283. https://doi.org/10.12738/estp.2015.1.2324
      376

Derlofske, J. V. & Taylor, A. E. F. (2000). Illumination Fundamentals. Rensselear Polytechnic Institute. USA.
Destro, F. H. T., Costa, R., & Iaione, F. (Oktober 2015). A low-cost system for experiments with digital circuits. Makalah disajikan dalam seminar 2015 IEEE Frontiers in Education Conference (FIE), di Camino Real El Paso, El Paso, TX, USA. https://doi.org/10.1109/FIE.2015.7344273
Dewi, K. C., Ciptayani, P. I., Surjono, H. D., & Priyanto. (2018). Modeling vocational blended learning based on digital learning now framework. TOJET: The Turkish Online Journal of Educational Technology, 17 (2), 89- 96. https://eric.ed.gov/?id=EJ1176162
Dhitareka, P. H., Firman, H. & Rusyati, L. (2018). The comparison between science virtual and paper based test in measuring grade 7 students’ critical thinking. IOP Conf. Series: Journal of Physics: Conf. Series, 1013, 1 – 7. https://doi.org/10.1088/1742-6596/1013/1/012070
Doherty, J. J. (2010). Bothering with technology: Building community in an honors seminar. Dalam Yukiko Inoue (Eds.), Cases on online and blended learning technologies in higher education: Concepts and practices (pp. 208 – 218). Hershey, New York: IGI Global.
Docktor, J. L. & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics - Physics Education Research, 10, 1 – 58. https://doi.org/10.1103/PhysRevSTPER.10.020119
Duban, N., Aydoğdu, B., & Yüksel, A. (2019). Classroom teachers' opinions on science laboratory practices. Universal Journal of Educational Research, 7(3), 772-780. https://doi.org/10.13189/ujer.2019.070317
Dunn, D. S. , Wilson, J. H., Freeman, J. E., & Stowell, J. R. (2011). Best practices for technology-enhanced teaching and learning: Connecting to psychology and the social sciences. New York: Oxford University Press, Inc.
Dwiyogo, W. D. (2018). Pembelajaran berbasis blended learning. Depok: Rajawali Pers.
Eagleton, S. (2017). Designing blended learning interventions for the 21st century student. Adv Physiol Educ, 41, 203–211. https://doi.org/10.1152/advan.00149.2016
Eddy, S. L., Converse, M. & Wenderoth, M. P. (2015). PORTAAL: A classroom observation tool assessing evidence-based teaching practices for active learning in large science, technology, engineering, and mathematics classes.
     377

CBE—Life Sciences Education, 4, 1 – 16. https://doi.org/10.1187/cbe-14-06- 0095
Edie, S. S., Masturi, Safitri, H. N. , Alighiri, D., Susilawati, Sari, L. M. E. K., Marwoto, P., & Iswari, R. S. (2018). The effect of using bomb calorimeter in improving science process skills of physics students. IOP Conf. Series: Journal of Physics: Conf. Series, 983, 1 – 8. https://doi.org/10.1088/1742- 6596/983/1/012205
Eggen, P. & Kauchak, D. (2016). Educational psychology windows on classrooms, thenth edition. New Jersey: Pearson Education, Inc.
Ehsani, B. (2016). Data acquisition using labview: Transform physical phenomena into computer-acceptable data using a truly object-oriented language. Birmingham: Packt Publishing
El-Abd, M. (2017). A review of embedded systems education in the arduino age: Lessons learned and future directions. iJEP, 7(2), 79 – 93. https://doi.org/10.3991/ijep.v7i2.6845
El-Mowafy, A., Kuhn, M. & Snow, T. (2013). Blended learning in higher education: Current and future challenges in surveying education. Issues in Educational Research, 23(2), 132 – 150. Diakses dari http://hdl.handle.net/20.500.11937/25900
Ennes, R. H. (1996). Critical thinking dispositions: Their nature and assessability. informal logic, 18(2 & 3), 165-182. Diakses dari https://informallogic.ca/index.php/informal_logic/article/view/2378/1820
Ennes, R. H. (2015). The nature of critical thinking: Outlines of general critical thinking dispositions and abilities. Diakses dari http://criticalthinking.net/wp- content/uploads/2018/01/The-Nature-of-Critical-Thinking.pdf
Ennes, R. H. (2018). The nature of critical thinking: An outline of critical thinking dispositions and abilities. Diakses dari https://education.illinois.edu/faculty- pages/robert-ennis
Etkina, E. & Planinšič, G. (2015). Defining and developing “critical thinking” through devising and testing multiple explanations of the same phenomenon. The Physics Teacher, 53, 432 – 437. https://doi.org/10.1119/1.4931014
Evans, J. C., Yip, H., Chan, K., Armatas, C., & Tse, A. (2019). Blended learning in higher education: Professional development in a Hong Kong university.
             378

Higher education research & development, 39 (4), 643 – 656. https://doi.org/10.1080/07294360.2019.1685943
Fadzil, H. M. & Saat, R. M. (2017). Exploring students’ acquisition of manipulative skills during science practical work. EURASIA Journal of Mathematics Science and Technology Education, 13(8), 4591–4607. https://doi.org/10.12973/eurasia.2017.00953a
Fairweather, I. & Brumfield, A. (Eds.). (2012). Labview: A developer’s guide to real world integration. USA: CRC Press
Faraniza, Z. (2021). Blended learning best practice to answers 21st century demands. ICOMSET, Journal of Physics: Conference Series, 1940, 1-9. https://doi.org/10.1088/1742-6596/1940/1/012122
Ficapal-Cusí, P. & Boada-Grau, J. (2015). E-learning and team-based learning. Practical experience in virtual teams. Procedia - Social and Behavioral Sciences, 196, 69 – 74. https://doi.org/10.1016/j.sbspro.2015.07.013
Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2023). How to design and evaluate research in education, eleventh edition. New York: McGraw Hill LLC.
Fraser, J. M., Timan, A. L., Miller, K., Dowd, J. E., Tucker, L., & Mazur. E. (2014). Teaching and physics education research: Bridging the gap. Reports on Progress in Physics, 77(3), 1 – 17. https://doi.org/10.1088/0034- 4885/77/3/032401
Frisnoiry, S., Darari, M. B., & Refisis, N. R. (2019). The development of IT-based learning media integrated 6 tasks of the KKNI through blended learning. IOP Conf. Series: Journal of Physics: Conf. Series, 1188, 1-8. https://doi.org/10.1088/1742-6596/1188/1/012108
Fry, H., Ketteridge, S. & Marshall, S. (2013). The handbook for teaching and learning in higher education. Penerjemah: Ahmad Asnawi dengan judul: Handbook teaching and learning: Strategi peningkatan mutu pendidikan di perguruan tinggi. Riau: Zahara Publishing.
Gaida, J.E., Seville, C., Cope, L., Dalwood, N., Morgan, P., & Maloney, S. (2016). Acceptability of a blended learning model that improves student readiness for practical skill learning: A mixed-methods study. Focus on Health Professional Education: A Multi-Disciplinary Journal, 17(1), 3-17. https://doi.org/10.11157/fohpe.v17i1.116
        379

Gamage, K. A. A., Wijesuriya, D. I., Ekanayake, S. Y., Rennie, A. E. W., Lambert, C. G., & Gunawardhana, N. (2020). Online delivery of teaching and laboratory practices: Continuity of university programmes during COVID-19 Pandemic. Education Sciences, 10 (291), 1 – 9. https://doi.org/10.3390/educsci10100291
Gambrill, E. & Gibbs, L. (2017). Critical thinking for helping professionals: A skills- based workbook. New York: Oxford University Press.
Gandhi, P. R., Livezey, J. A., Zaniewski, A. M., Reinholz, D. L., & Dounas-Frazer, D. R. (2016). Attending to experimental physics practices and lifelong learning skills in an introductory laboratory course. Am. J. Phys, 84 (9), 696 – 703. https://doi.org/10.1119/1.4955147
Ganefri, Hidayat, H., Kusumaningrum, I., & Mardin, A. (2017). Needs analysis of entrepreneurships pedagogy of technology and vocational education with production base learning approach in higher education. International Journal on Advaced Science Engineering Infromation Technology, 7(5), 1701 – 1707. https://doi.org/10.18517/ijaseit.7.5.1510
Garcia-Zubia, J., Cuadros, J., Romero, S., Hernandez-Jayo, U., Orduña, P., Guenaga, M., Gonzalez-Sabate, L., & Gustavsson, I. (2016). Empirical analysis of the use of the VISIR remote lab in teaching analog electronics. IEEE Transactions on Education, 60(2), 149 - 156. https://doi.org/10.1109/TE.2016.2608790
Garrison, D. R., & Vaughan, N. D. (2008). Blended learning in higher education: Framework, principles, and guidelines. San Francisco: John Wiley & Sons, Inc.
Geng, J. & Wu, X. (2021). Application of virtual reality technology in university education. Journal of Physics: Conference Series, IOP Publishing, 1972, 1- 5. https://doi.org/10.1088/1742-6596/1972/1/012023
Giancoli, D. C. (2016). Physics: Principles with applications, 7th edition. Pearson Education Limited: USA.
Gillespie, H., Boulton, H., Hramiak, A., & Williamson, R. (2007). Learning and teaching with virtual learning environments. Southernhay East: Learning Matters Ltd
Glazer, E. (2001). Using internet primary sources to teach critical thinking skills in mathematics. London: Greenwood Press
       380

Golinski, J. (2005). Making natural knowledge: Constructivism and the history of science. London: The University of Chicago Press, Ltd
Gregory, R. J. (2015). Psychological testing: History, principles, and applications. Boston, MA: Pearson.
Grimmett, R. (2014). Arduino robotic projects: Build awesome and complex robots with the power of arduino. Birmingham: Packt Publishing
Gudyanga, R. & Jita, L. C. (2019). Teachers’ implementation of laboratory practicals in the south african physical sciences curriculum. Issues in Educational Research, 29(3), 715 – 731. http://www.iier.org.au/iier29/gudyanga.pdf
Guerriero, S. (2017). Pedagogical knowledge and the changing nature of the teaching profession. Paris: OECD Publishing.
Gultepe, N. (2016). High school science teachers’ views on science process skills. International Journal of Environmental & Science Education, 11(5), 779 – 800. https://doi.org/10.12973/ijese.2016.348a
Gultepe, N. & Kilic, Z. (2015). Effect of scientific argumentation on the development of scientific process skills in the context of teaching chemistry. International Journal of Environmental & Science Education, 10(1), 111- 132. https://doi.org/10.12973/ijese.2015.234a
Gumilar, S., Ismail, A., Budiman, D. M., & Siswanto, S. (2019). Inquiry instructional model infused blended experiment: Helping students enhance critical thinking skills. IOP Conf. Series: Journal of Physics: Conf. Series, 1157, 1-6. https://doi.org/10.1088/1742-6596/1157/3/032009
Gupta, S., & John, J. (2010). Virtual instrumentation using labview (principles and practices of graphical programming), second edition. New Delhi: Tata McGraw Hill Education Private Limited.
Haglund, J., Melander, E., Weiszflog, M., & Andersson, S. (2017). University physics students’ ideas of thermal radiation expressed in open laboratory activities using infrared cameras. Research in Science & Technological Education. 1 – 19. https://doi.org/10.1080/02635143.2017.1318362
Häkkinen, P., Järvelä, S., Mäkitalo-Siegl, K., Ahonen, A., Näykki, P., & Valtonen, T. (2017). Preparing teacher-students for twenty-first-century learning practices (PREP 21): A framework for enhancing collaborative problem- solving and strategic learning skills. Teachers and Teaching: Theory and practice, 23(1), 25 – 41. https://doi.org/10.1080/13540602.2016.1203772
       381

Hamed, G. & Aljanazrah, A. (2020). The effectiveness of using virtual experiments on students’ learning in the general physics lab. Journal of Information Technology Education: Research, 19, 976-995. https://doi.org/10.28945/4668
Hammoumi, A. E., Motahhir, S., Chalh, A., Ghzizal, A. E., & Derouich, A. (2018). Real-time virtual instrumentation of arduino and labview based PV panel characteristics. IOP Conf. Series: Earth and Environmental Science, 161, 1 – 11. https://doi.org/10.1088/1755-1315/161/1/012019
Hardianti, T. & Kuswanto, H. (2017). Difference among levels of inquiry: Process skills improvement at senior high school in indonesia. International Journal of Instruction, 10(2), 119 – 130. https://doi.org/10.12973/iji.2017.1028a
Hardianti, R. D., Wusqo, I. U., Savitri, E. N., Pamelasari, S. D., Yanitama, A., Suanto, A., & Widyatama, A. S. (2021). LMS-supported science blended learning design workshop as an effort to improve learning quality for science teachers. ICMSE, Journal of Physics: Conference Series, 1918, 1-6. https://doi.org/10.1088/1742-6596/1918/5/052089
Harlow, J. J. B., Harrison, D. M., & Meyertholen, A. (2016). Effective student teams for collaborative learning in an introductory university physics course. Physical Review Physics Education Research, 12 (1), 1 – 11. https://doi.org/10.1103/PhysRevPhysEducRes.12.010138
Harman, G., Cokelez, A., Dal, B., & Alper, U. (2016). Pre-service science teachers’ views on laboratory applications in science education: The effect of a two- semester course. Universal Journal of Educational Research, 4(1), 12 – 25. https://doi.org/10.13189/ujer.2016.040103
Haryadi, R. & Pujiastuti, H. (2020). PhET simulation software-based learning to improve science process skills. Journal of Physics: Conference Series, 1521, 1 -6. https://doi.org/10.1088/1742-6596/1521/2/022017
Hasnunidah, N., Susilo, H., Irawati, M. H., & Sutomo, H. (2015). Argument-driven inquiry with scaffolding as the development strategies of argumentation and critical thinking skills of students in Lampung, Indonesia. American Journal of Educational Research, 3(9), 1185 – 1192. https://doi.org/10.12691/education-3-9 -20
Herliana, F., Farhan, A., Elisa, Syukri, M. , Mahzum, E. (2021). Perception of novice learners using blended learning approach during the Covid-19
        382

pandemic. Journal of Physics: Conference Series, 2019, 1-9. https://doi.org/10.1088/1742-6596/2019/1/012032
Heyde, V. V. D. & Siebrits, A. (2018). Students’ attitudes towards online pre- laboratory exercises for a physics extended curriculum programme. Research In Science & Technological Education, 1470-1138. https://doi.org/10.1080/02635143.2018.1493448
Hidayah, R. & Destari, T. Y. (2019). The practicality of scrap-mod as a learning media on molecular geometry. Advances in Computer Science Research, 95, 222-226. https://doi.org/10.2991/miseic-19.2019.52
Hinampas, R. T., Murillo, C. R., Tan, D. A., & Layosa, R. U. (2018). Blended learning approach: Effect on students’ academic achievement and practical skills in science laboratories. International Journal of Scientific & Technology Research, 7(11), 63-69. Diakses dari www.ijstr.org
Hırça, N. (2013). The influence of hands on physics experiments on scientific process skills according to prospective teachers’ experiences. European Journal of Physics Education, 4(1), 1-9. https://eric.ed.gov/?id=EJ1052287
Hodosyová, M., Útla, J., Vanyová, M., Vnuková, P., & Lapitková, V. (2015). The development of science process skills in physics education. Procedia - Social and Behavioral Sciences, 186, 982 – 989. https://doi.org/10.1016/j.sbspro.2015.04.184
Hohmann, J. W. & Grillo, M. C. (2014). Using critical thinking rubrics to increase academic performance. Journal of College Reading and Learning, 45: 35–51. https://doi.org/10.1080/10790195.2014.949551
Hoic-Bozic, N., Mornar, V., & Boticki, I. (2009). A blended learning approach to course design and implementation. IEEE Transactions on Education, Vol. 52, No. 1, 19 – 30. https://doi.org/10.1109/TE.2007.914945
Holmes, N.G. & Wieman, C. E. (2016). Examining and contrasting the cognitive activities engaged in undergraduate research experiences and lab courses. Physical Review Physics Education Research, 12, 020103. https://doi.org/10.1103/PhysRevPhysEducRes.12.020103
Holmes, N. G., Olsen, J., Thomas, J. L., & Wieman, C. E. (2017). Value added or misattributed? a multi-institution study on the educational benefit of labs for reinforcing physics content. Physical Review Physics Education Research, 13(1), 1-12. https://doi.org/10.1103/PhysRevPhysEducRes.13.010129
            383

Hosnan. (2016). Pendekatan saintifik dan kontekstual dalam pembelajaran abad 21 (kunci sukses implementasi kurikulum 2013). Bogor: Ghalia Indonesia.
Huang, Z. & Wang, X. (2014). Development of virtual instrument motor experiment teaching system based on labview. Journal of Chemical and Pharmaceutical Research, 6(5), 1361-1368. http://www.jocpr.com/articles/development-of-virtual-instrument-motor- experiment-teaching-system-based-on-labview.pdf
Hubackova, S. & Semradova, I. (2016). Evaluation of blended learning. Procedia - Social and Behavioral Sciences, 217 (2016) 551 – 557. https://doi.org/10.1016/j.sbspro.2016.02.044
Hughes, W. (2000). Critical thinking: An introduction to the basic skills 3rd ed. Canada: Broadview Press Ltd
Husnaini, S. J. & Chen, S. (2019). Effects of guided inquiry virtual and physical laboratories on conceptual understanding, inquiry performance, scientific inquiry self-efficacy, and enjoyment. Physical Review Physics Education Research, 15 (010119), 1 – 16. https://doi.org/10.1103/PhysRevPhysEducRes.15.010119
Hwang, Gwo-Jen., Hung, Chun-Ming., & Chen, Nian-Shing. (2014). Improving learning achievements, motivations and problem-solving skills through a peer assessment-based game development approach. Education Tech Research Dev, 62, 129 – 145. https://doi.org/10.1007/s11423-013-9320-7
Hwang, Wu-Yuin., Kongcharoen, C., & Ghinea, G. (2017). Influence of students’ affective and conative factors on laboratory learning: Moderating effect of online social network attention. EURASIA Journal of Mathematics Science and Technology Education, 13(3):1013–1024. https://doi.org/10.12973/eurasia.2017.00655a
Ichsan, R. N., Nasution, L., & Sinaga, S. (2019). Studi kelayakan bisnis (business feasibility study). Medan: CV. Manhaji.
Illeperuma, G. D & Sonnadara, D. U. J. (September 2017). Computer vision based object tracking as a teaching aid for high school physics experiments. Makalah disajikan dalam 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), di Yogyakarta, Indonesia. https://doi.org/10.1109/EECSI.2017.8239112
       384

Ince, E. (2018). An overview of problem solving studies in physics education. Journal of Education and Learning, 7(4), 191 – 200. https://doi.org/10.5539/jel.v7n4p191
Ismaniati, C., Sungkono, & Wahyuningsih, D. (2015). Model blended learning untuk meningkatkan kemandirian belajar dan daya tarik dalam perkuliahan. Jurnal Penelitian Ilmu Pendidikan, Volume 8, Nomor 2, September, Hal. 19 – 27.
Jackson, D., & Newberry, P. (2012). Critical thinking: A user’s manual. Boston: Wadsworth, Cengage Learning
Jerome, J. (2010). Virtual instrumentation using labview. New Delhi: PHI Learning Private Limited
Jolly, P. (2017). Physware: A collaborative initiative for strengthening physics education and promoting active learning in the developing world. Scientia in educatione, 8(Special Issue), 59–78. https://ojs.cuni.cz/scied/article/view/732
Jones, B. E. (2013). Measurement: Past, present and future: Part 2 measurement instrumentation and sensors. Measurement and Control, 46(4), 115-121. https://doi.org/10.1177/0020294013485675
Joyce, B., Weil, M., & Calhoun, E. (2016). Model of Teaching, Edisi Kesembilan. (Terjemahan Rianayati Kusmini Pancasari). Yogyakarta: Pustaka Pelajar. (Edisi asli diterbitkan tahun 2015 oleh Personal Education Inc. New Jersey Upper Saddle River).
Kallet, M. (2014). Think smarter: Critical thinking to improve problem-solving and decision-making skills. New Jersey: John Wiley & Sons, Inc.
Karmakar, S. (2016). Virtual-instrument-based online monitoring system for hands-on laboratory experiment of partial discharges. IEEE Transactionson Education, 60(1), 29 - 37. https://doi.org/10.1109/TE.2016.2586754
Keengwe, J. & Agamba, J. J. (2015). Models for improving and optimizing online and blended learning in higher education. United States of America: Information Science Reference.
Keller, M. M., Neumann, K., & Fischer, H. E. (2017). The impact of physics teachers’ pedagogical content knowledge and motivation on students’ achievement and interest. Journal Of Research In Science Teaching, 54(5), 586–614. https://doi.org/10.1002/tea.21378
     385

Kelly, A. M. (2013). Physics teachers’ perspectives on factors that affect urban physics participation and accessibility. Physical Review Special Topics - Physics Education Research, 9, 010122. https://doi.org/10.1103/PhysRevSTPER.9.010122
Kerres, M. & Witt, C. DE. (2003). A didactical framework for the design of blended learning arrangements. Journal of Educational Media, 28, 101 – 113. https://doi.org/10.1080/1358165032000165653
Khaddaj, S. I. & Marmar, A. R. (2016). Electric circuit interactive laboratory. International Journal of Electrical Engineering Education, 53(3), 195–211. https://doi.org/10.1177/0020720915611429
Khan, A. I., Qayyum, N., Shaik, M. S., Ali, A. M., & Bebi, C. V. (2012). Study of blended learning process in education context. International Journal of Modern Education and Computer Science (IJMECS), 2012 (9) 23-29, https://doi.org/10.5815/ijmecs.2012.09.03
Kharki, K. E., Bensamka, F., & Berrada, K. (2020). Enhancing practical work in physics using virtual javascript simulation and LMS platform. Dalam Daniel Burgos (Eds.), Radical solutions and e-learning practical innovations and online educational technology (pp. 131 – 146). Springer, Springer Nature Singapore.
Kimmelmanna, N. & Lang, J. (2018). Linkage within teacher education: Cooperative learning of teachers and student teachers. European Journal of Teacher Education, 42(1), 52 – 64. https://doi.org/10.1080/02619768.2018.1547376
Kintu, M. J. & Zhu, C. (2016). Student characteristics and learning outcomes in a blended learning environment intervention in a Ugandan university. The Electronic Journal of e-Learning, 14 (3), 181-195. https://eric.ed.gov/?id=EJ1107126
Kistner, S., Vollmeyer, R., Burns, B. D., & Kortenkamp, U. (2016). Model development in scientific discovery learning with a computer-based physics task. Computers in Human Behavior, 59, 446-455. https://doi.org/10.1016/j.chb.2016.02.041
Klein, A.Z., Junior, J.C., da, S.F., Barbosa, J.L.V., Baldasso, L. (2018). The educational affordances of mobile instant messaging (mim): Results of whatsapp® used in higher education. International Journal of Distance Education Technologies, 16 (2), 51–64. https://doi.org10.4018/IJDET.2018040104
          386

Klentien, U. & Wannasawade, W. (2016). Development of blended learning model with virtual science laboratory for secondary students. Procedia - Social and Behavioral Sciences, 217 (2016), 706 – 711. https://doi.org/1016/j.sbspro.2016.02.126
Kong, S. C. (2014). Developing information literacy and critical thinking skills throughdomain knowledge learning in digital classrooms: An experience of practicing flipped classroom strategy. Computers & Education, 78, 160 – 173. https://doi.org/10.1016/j.compedu.2014.05.009
Kornilov, V. S. & Khanina, I. A. (2020). Development of ICT competence in high school students when teaching physics using digital laboratories. Journal of Informatization in Education, 17 (2), 146–152. https://doi.org/10.22363/2312-8631-2020-17-2-146-152
Köse, U. (2010). A blended learning model supported with web 2.0 technologies. Procedia Social and Behavioral Sciences, 2 (2010) 2794–2802. https://doi.org/10.1016/j.sbspro.2010.03.417
Krasnova, L., & Shurygin, V. (2019). Blended learning of physics in the context of the professional development of teachers. International Journal of Emerging Technologies in Learning (iJET), 14(23), 17–32. https://doi.org/10.3991/ijet.v14i23.11084
Krasnova, T. (2015). A paradigm shift: Blended learning integration in russian higher education. Procedia - Social and Behavioral Sciences, 166 (2015), 399 – 403. https://doi.org/10.1016/j.sbspro.2014.12.543
Kruea-In, N. & Thongperm, O. (2014). Teaching of science process skills in thai contexts: Status, supports and obstacles. Procedia - Social and Behavioral Sciences, 141, 1324 – 1329. https://doi.org/10.1016/j.sbspro.2014.05.228
Küçük, K. (2017). RTWiFi-Lab: A real-time wi-fi laboratory platform on USRP and labview for wireless communications education and research. Comput Appl Eng Educ, 26, 111 – 124. https://doi.org/10.1002/cae.21865
Kurukunda, S., Trigona, C., & Baglio, S. (2020). Laboratory activity during COVID- 19 as a “virtual experience”: Restriction or chance?. Makalah
  Kobeissi, A. H., Bellotti, F., Berta, R., & De Gloria, A. (2018). IoT grid alignment
 assistant system for dynamic wireless charging of electric vehicles. Fifth
 International Conference on Internet of Things: Systems, Management and
 Security, 274 – 279. https://doi.org/10.1109/iotsms.2018.8554902
        387

disajikan dalam seminar 17th International Multi-Conference on Systems, Signals & Devices, di Monastir, Tunisia.
Labovitz, S. (1968). Criteria for selecting a significance level: A note on the sacrednees of .05. The American Sociologist, 3(3), 220-222. https://doi.org/10.2307/27701367
Lamb, R., Antonenko, P., Etopio, E. & Seccia, A. (2018). Comparison of virtual reality and hands on activities in science education via functional near infrared spectroscopy. Computers & Education, 124, 14-26. https://doi.org/10.1016/j.compedu.2018.05.014
Larkin, T. L. (2015). A rubric to enrich student writing and understanding. iJEP, 5(2), 12 - 19. https://doi.org/10.3991/ijep.v5i2.4587
Law, A. M. (2015). Simulation modeling and analysis, fifth edition. New York: McGraw-Hill Education
Lawrie, G. A., Grøndahl, L., Boman, S., & Andrews, T. (2016). Wiki laboratory notebooks: Supporting student learning in collaborative inquiry-based laboratory experiments. Journal of Science Education and Technology, 23(3), 394–409. https://doi.org/10.1007/s10956-016-9601-0
Lederman, J. S. & Stefanich, G.P. (2006). Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education. Editor: Flick, L.B dan Lederman, N. G. Netherlands: Springer
Lee, Y. C., Lau, Kwok-Chi., & Yip, V. W. Y. (2016). Blended learning for building student-teachers’ capacity to learn and teach science-related interdisciplinary subjects the case of hong kong. Asian Association of Open Universities Journal, 11(2), 166-181. https://doi.org/10.1108/AAOUJ-09-2016-0029
Lee, J., Lim, C., & Kim, H. (2017). Development of an instructional design model for flipped learning in higher education. Education Tech Research Dev, 65, 427 – 453. https://doi.org/10.1007/s11423-016-9502-1
Leicester, M., & Taylor, D. (2010). Critical thinking across the curriculum: Developing critical thinking skills, literacy and philosophy in the primary classroom. New York: Open University Press
Leonard, N. C. & Nwanekezi, A. U. (2018). Effects of guided inquiry and task hierarchy analysis model in cooperative learning strategy on chemistry students’ performance in imo state. European Scientific Journal, 14(25), 56 – 62. https://doi.org/10.19044/esj.2018.v14n25p54
        388

Lestari, Supardi, & Jatmiko. (2021). Virtual classroom critical thinking as an alternative teaching model to improve students' critical thinking skills in pandemic coronavirus disease era. European Journal of Educational Research, 10 (4), 2003 – 2015. https://doi.org/10.12973/eu-jer.10.4.2003
Li, L., & Tang, H. T. (2017). Teaching physics with blended learning. Journal of Modern Education Review, 4(4), 231 – 241. https://doi.org/10.15341/jmer(2155-7993)/04.07.2017/001
Lidozzi, A., Di Benedetto, M., Sabatini, V., Solero, L., & Crescimbini, F. (Oktober 2016). Towards labview and system on module for power electronics and drives control applications. Makalah ini diseminarkan pada IECON 2016 – 4 2nd Annual Conference of the IEEE Industrial Electronics Society, di Florence, Italy. https://doi.org/10.1109/IECON.2016.7793886
Lim, C. P. & Wang, L. (Eds.). (2017). Blended learning for quality higher education: Selected case studies on implementation from Asia-Pacific. France & Bangkok: UNESCO.
Lim, F. P. (2017). An analysis of synchronous and asynchronous communication tools in e-learning. Advanced Science and Technology Letters, 143, 230-234. http://doi.org/10.14257/astl.2017.143.46
Lim, C. P., Wang, T., & Graham, C. (2019). Driving, sustaining and scaling up blended learning practices in higher education institutions: a proposed framework. Innovation and Education, 1(1), 1 – 12. https://doi.org/10.1186/s42862-019-0002-0
Liu, C., Guo, Z., Feng, Y., Hong, F., & Jing, W. (2017). CPCA: The cloud platform of complex virtual instruments system architecture. IEEE Access, 5, 4350 - 4360. https://doi.org/10.1109/ACCESS.2017.2682258
Liu, D., Valdiviezo-Díaz, P., Riofrio, G., Sun, Yi-Meng, & Barba, R. (2015). Integration of virtual labs into science e-learning. Procedia Computer Science, 75, 95 – 102. https://doi.org/10.1016/j.procs.2015.12.224
Liew, S. S., Lim, H. L., Saleh, S., & Ong, S. L. (2019). Development of scoring rubrics to assess physics practical skills. EURASIA Journal of Mathematics, Science and Technology Education, 15(4), 1 – 14. https://doi.org/10.29333/ejmste/103074
Loes, C. N., Salisbury, M. H., & Pascarella, E. T. (2015). Student perceptions of effective instruction and the development of critical thinking: A replication
        389

and extension. High Educ, 69, 823–838. https://doi.org/10.1007/s10734-014- 9807-0
López-Rodríguez, F. M. & Cuesta, F. (2016). Andruino-a1: Low-cost educational mobile robot based on android and arduino. Journal of Intelligent and Robotic Systems, 81(1), 63–76. https://doi.org/10.1007/s10846-015-0227-x
Loyd, D. H. (2008). Physics laboratory manual, third edition. USA: Thomson Higher Education
Lukowiak, M., Radziszowski, S., Vallino, J., & Wood, C. (2014). Cybersecurity education: Bridging the gap between hardware and software domains. ACM Transactions on Computing Education (TOCE), 14(1), 1 – 12. https://doi.org/10.1145/2538029
Lunetta, V. N., Hofstein, A., & Clough, M. P. (2007). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice. Dalam Abel, S. K. & Lederman, N. G., Handbook of research on science education (393 – 441). New Jersey: Lawrence Erlbaum Associates, Inc.
Luthon, F. & Larroque, B. (2015). LaboREM—A remote laboratory for game-like training in electronics. IEEE Transactions On Learning Technologies, 8(3), 311 – 321. https://doi.org/10.1109/TLT.2014.2386337
Mabruroh, F. & Suhandi, A. (2017). Construction of critical thinking skills test instrument related the concept on sound wave. Journal of Physics: Conference Series, 812, 012056. https://doi.org/10.1088/1742- 6596/812/1/012056
Mardapi, D. (2017). Pengukuran, penilaian dan evaluasi pendidikan. Yogyakarta: Parama Publishing
McLaughlin, J. S., Favre, D. E., Weinstein, S. E., & Goedhart, C. M. (2017). The impact of a four-step laboratory pedagogical framework on biology students’ perceptions of laboratory skills, knowledge, and interest in research. Journal of college science teaching, 47(1), 83 – 91. https://doi.org/10.2505/4/jcst17_047_01_83
McLeskey, J., Barringer, M-D., Billingsley, B., Brownell, M., Jackson, D., Kennedy, M., Lewis, T., Maheady, L., Rodriguez, J., Scheeler, M. C., Winn, J., & Ziegler, D. (2017). High-leverage practices in special education. Arlington, VA: Council for Exceptional Children & CEEDAR Center.
        390

MacLeod, K. (2013). Physics education and STSE: Perspectives from the literature. European J of Physics Education, 4(4), 1 – 12. https://files.eric.ed.gov/fulltext/EJ1052388.pdf
MacRitchie, F. (2018). The need for critical thinking and the scientific method. New York: CRC Press
Maddison, T. & Kumaran, M. (Eds.). (2017). Distributed learning: Pedagogy and technology in online information literacy instruction. Cambridge, MA: Elsevier Ltd.
Madsen, A., McKagan, S. B. & Sayre, E. C. (2015). How physics instruction impacts students’ beliefs about learning physics: A meta-analysis of 24 studies. Physical Review Special Topics - Physics Education Research, 11, 010115. https://doi.org/10.1103/PhysRevSTPER.11.010115
Makransky, G., Thisgaard, M. W., & Gadegaard, H. (2016). Virtual simulations as preparation for lab exercises: Assessing learning of key laboratory skills in microbiology and improvement of essential non-cognitive skills. Plos One, 11(6), 1 – 11. https://doi.org/10.1371/journal.pone.0155895
Marisda, D. H. & Ma’ruf, M. (2020). Situation analysis of mathematical physics learning with online learning during the COVID-19 pandemic. Journal of Physics: Conference Series, 1806, 1-5, https://doi.org/10.1088/1742- 6596/1806/1/012034
Marnita, Taufiq, M., Iskandar, & Rahmi. (2020). The effect of blended learning problem-based instruction model on students’ critical thinking ability in thermodynamic course. Jurnal Pendidikan IPA Indonesia, 9 (3), 430-438. https://doi.org/10.15294/jpii.v9i3.23144
Marques, M. A., Viegas, M. C., Costa-Lobo, M. C., Fidalgo, A. V., Alves, G. R., Rocha, J. S., & Gustavsson, I. (2014). How remote labs impact on course outcomes: Various practices using visir. IEEE Transactions on Education, 57(3), 151 – 159. https://doi.org/10.1109/TE.2013.2284156
Martin, D. J. (2009). Elementary science methods: A constructivist approach, fifth edition. USA: Wadsworth, Cengage Learning
Martín-Ramos, P., Lopes, M. J., da Silva, M. M. L., & Silva, M. R. (November 2016). Student2student: Arduino project-based learning. Makalah ini disajikan pada Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality – TEEM’16, di New York. https://doi.org/10.1145/3012430.3012500
          391

Matthews, R. & Lally, J. (2010). The thinking teacher’s toolkit: Critical thinking, thinking skills and global perspectives. London: Continuum International Publishing Group
Matukhin, D. & Zhitkova, E. (2015). Implementing blended learning technology in higher professional education. Procedia - Social and Behavioral Sciences, 206 (2015), 183 – 188. https://doi.org/10.1016/j.sbspro.2015.10.051
McDowell, T. (2015). Applying critical social theories to family therapy practice. New York: Springer International Publishing
Meltzer, D. E., Plisch, M., & Vokos, S. (Eds.). (2012). Transforming the preparation of physics teachers: A call to action, a report by the task force on teacher education in physics (T-TEP). USA: American Physical Society.
Meltzer, D. E., & Otero, V. K. (2015). A brief history of physics education in the united states. American Association of Physics Teachers, 83(5), 447 – 458. https://doi.org/10.1119/1.4902397
Menteri Pendidikan dan Kebudayaan Republik Indonesia. (2020). Peraturan menteri pendidikan dan kebudayaan republik indonesia Nomor 3 Tahun 2020 tentang standar nasional pendidikan tinggi.
Menteri Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia. (2022). Peraturan menteri pendidikan, kebudayaan, riset, dan teknologi republik indonesia nomor 56 tahun 2022 tentang standar pendidikan guru.
Minda, A. A., Gillich, N., Chioncel, C. P., & IosifPraisach, Z. (2015). Enhancing mathematical skills by the use of virtual instruments. Procedia - Social and Behavioral Sciences, 192, 996-1001. https://doi.org/10.1016/j.sbspro.2015.04.451
Miranda, R. J. & Damico, J. B. (2015). Hanges in teachers’ beliefs and classroom practices concerning inquiry-based instruction following a year-long ret-plc program. Science Educator, 24 (1), 23 – 35. https://eric.ed.gov/?id=EJ1069987
Monk, S. (2010). 30 ArduinoTM projects for the evil geniusTM. New York: The McGraw-Hill Companies, Inc
  McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276-282. https://hrcak.srce.hr/89395
    392

Moon, J. (2008). Critical Thinking: An exploration of theory and practice. New York: Routledge
Moore, B. N., & Parker, R. (2015). Critical thinking, eleventh edition. New York: McGraw-Hill Education
Moosvi, F., Reinsberg, S., & Rieger, G. (2019). Can a hands-on physics project lab be delivered effectively as a distance lab?. International Review of Research in Open and Distributed Learning, 20 (1), 1-22. https://doi.org/10.19173/irrodl.v20i1.3782
Moradi, M., Liu, L., Luchies, C., Patterson, M. M. & Darban, B. (2018). Enhancing teaching-learning effectiveness by creating online interactive instructional modules for fundamental concepts of physics and mathematics. Educational Sciences, 8(109), 1 - 14. https://doi.org/10.3390/educsci8030109
Moreno, R. (2010). Educational psychology. USA: John Wiley & Sons, Inc.
Mosterman, P. J. & Zander, J. (2015). Cyber-physical systems challenges: A needs analysis for collaborating embedded software systems. Software & Systems Modeling, 15(1), 1 – 16. https://doi.org/10.1007/s10270-015-0469-x
Mason, A. & Singh, C. (2016). Using categorization of problems as an instructional tool to help introductory students learn physics. Physics Education (IOP), 51(2), 1 – 9. https://doi.org/10.1088/0031-9120/51/2/025009
Muchlas. (2013). Pengembangan model pembelajaran online untuk praktik teknik digital di perguruan tinggi. Disertasi, tidak diterbitkan, Universitas Negeri Yogyakarta, Yogyakarta.
Mukhtar & Iskandar. (2011). Desain pembelajaran berbasis teknologi informasi dan komunikasi (sebuah orientasi baru). Jakarta: Gaung Persada (GP) Press.
Murakami, G. E., Hirata, D., Monteiro, M. A. A., Pinheiro, D. M., & Germano, J. S. E. (2017). Proposal of a learning management system for physics education with the inclusion of weblab and assessment of its application. Journal of Environmental Science and Engineering B, 6, 101-113. https://doi.org/10.17265/2162-5263/2017.02.005
Mutakinati, L., Anwari, I., & Yoshisuke, K. (2018). Analysis of students’ critical thinking skill of middle school through STEM education project-based learning. Jurnal Pendidikan IPA Indonesia, 7(1), 54 – 65. https://doi.org/10.15294/jpii.v7i1.10495
      393

Mulyono, H., Suryoputro, G., & Jamil, S. R. (2021). The application of whatsApp to support online learning during the COVID-19 pandemic in Indonesia. Heliyon, 7, e07853, 1 – 8. https://doi.org/10.1016/j.heliyon.2021.e07853
Mundilarto & Ismoyo, H. (2017). Effect of problem-based learning on improvement physics achievement and critical thinking of senior high school student. Journal of Baltic Science Education, 16(5), 761 – 780. http://oaji.net/articles/2017/987-1509214187.pdf
Mutlu, M. & Temiz, B. K. (2013). Science process skills of students having field dependent and field independent cognitive styles. Educational Research and Reviews, 8 (11), 766 -776. https://doi.org/10.5897/ERR2012.1104
Mutlu, A., & Acar-Şeşen, B. (2018). Pre-service science teachers’ understanding of chemistry: A factorial design study. EURASIA Journal of Mathematics, Science and Technology Education, 14(7), 2817 – 2837. https://doi.org/10.29333/ejmste/90758
Nagata, J. J., García, J., Giner, B., & Abad, F. M. (2016). Virtual heritage of the territory: Design and implementation of educational resources in augmented reality and mobile pedestrian navigation. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 11(1), 41 – 46. https://doi.org/10.1109/RITA.2016.2518460
Nasution, A. K. P., Surbakti, A. H., Zakaria, R., Wahyuningsih, S. K., & Daulay, L. A. (2020). Face to face learning vs blended learning vs online learning (student perception of learning). Journal of Physics: Conference Series, 1783, 1-6. https//doi.org/10.1088/1742-6596/1783/1/012112
National Instruments Corporate Headquarters. (2003). Labview six hour course. Texas USA: National Instrument
National Instruments Corporate Headquarters. (2008). Ni educational laboratory virtual instrumentation suite (NI ELVISTM) user manual. Texas USA: National Instrument
National Instruments Corporate Headquarters. (2013). Getting started with labview. Texas USA: National Instrument
National Instruments. (2018). What is labview?. Texas. Diakses dari
http://www.ni.com/en-id/shop/labview.html
National Instruments. (2019). Virtual instrumentation. Texas. Diakses dari
https://www.ni.com/en-id/innovations/white-papers/06/virtual- instrumentation.html
         394

National Research Council of The National Akademies. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. United States of America: The National Academy of Sciences
National Science Teacher Association. (2005). Physical science. Texas, USA: Holt, Rinehart and Winston
Nida, N. K., Usodo, B., & Saputro D. R. S. (2020). The blended learning with WhatsApp media on mathematics creative thinking skills and math anxiety. Journal of Education and Learning (EduLearn), 40(2), 307-314, https://doi.org/10.11591/edulearn.v14i2.16233
Nixon, R. S., Godfrey, T. J., Mayhew, N. T., & Wiegert, C. C. (2016). Undergraduate student construction and interpretation of graphs in physics lab activities. Physical Review Physics Education Research, 12, 010104, 1 – 19. https://doi.org/10.1103/PhysRevPhysEducRes.12.010104
Novalinda, R., Dakhi, O., Fajra, M., Azman, A., Masril, M., Ambiyar, Verawadina, & Unung. (2020). Learning model team assisted individualization assisted module to improve social interaction and student learning achievement. Universal Journal of Educational Research, 8(12A), 7974-7980. https://doi.org/10.13189/ujer.2020.082585
Novella, S. (2012). Your deceptive mind: A scientific guide to critical thinking skills. United States of America: The Teaching Company
Nurhayati, E. (2011). Psikologi pendidikan inovatif. Yogyakarta: Pustaka Pelajar Nurlina, Nurfadilah, & Bahri, A. (2021). Teori belajar dan
pembelajaran. Makasar: LPP Unismuh Makassar.
Nuryanto, A., Pardjono, Ngadiyono, Y., Nugraha, Y., & Rofiq, Z. (2020). A blended learning with social media in computer-aided drafting courses. Journal of Physics: Conference Series, 1700, 1-6. https://doi.org/10.1088/1742-6596/1700/1/012013
   Nokes-Malach, T. J., Richey, J. E., & Gadgil, S. (2015). When is it better to learn
 together? Insights from research on collaborative learning. Educational
 Psychology Review, 27(4), 645–656. https://doi.org/10.1007/s10648-015-
  9312-8
   395

Ojaleye, O. & Awofala, A. O. A. (2018). Blended learning and problem-based learning instructional strategies as determinants of senior secondary school students’ achievement in algebra. International Journal of Research in Education and Science, 4 (2), 486 – 501. https://doi.org/10.21890/ijres.428286
Okaz, A. A. (2015). Integrating blended learning in higher education. Procedia - Social and Behavioral Sciences, 186 (2015) 600 – 603. https://doi.org/10.1016/j.sbspro.2015.04.086
Organtini, G. (2018). Arduino as a tool for physics experiments. IOP Conf. Series: Journal of Physics: Conf. Series, 1076, 1-7. https://doi.org/10.1088/1742- 6596/1076/1/012026
Ornstein, A. C. & Hunkins, F. P. (2018). Curriculum foundations, principles, and issues, seventh edition. England: Pearson Education
Osborne, J. (2014). Teaching critical thinking? new directions in science education. School Science Review, 95(352), 53 – 62. https://eric.ed.gov/?id=EJ1032459
Oskomov, V., Sedov, A., Saduyev, N., Kalikulov, O., Kenzhina, I., Tautaev, E., Mukhamejanov, Y., Dyachkov, V., & Utey, S. (2017). Data collection system for a wide range of gas-discharge proportional neutron counters. IOP Conf. Series: Journal of Physics: Conf. Series 936, 012047, 1 – 5. https://doi.org/10.1088/1742-6596/936/1/012047
Oxford Cambridge & RSA. (2017). AS and a level practical skills handbook: Physics A, physics B (advancing physics). England: Oxford Cambridge and RSA Examinations
Parrish, D. R. (2016). Principles and a model for advancing future-oriented and student-focused teaching and learning. Procedia - Social and Behavioral Sciences, 228, 311 – 315. https://doi.org/10.1016/j.sbspro.2016.07.046
Parkhomenko, A., Gladkova, O., Kurson, S., Sokolyanskii, A. & Ivanov, E. (2015). Internet-based technologies for design of embedded systems. Journal of Control Science and Engineering 2, 55-63. https://doi.org/10.17265/2328- 2231/2015.02.001
Paulsen, M. B. (Eds.). (2015). Higher education: Handbook of theory and research. Switzerland: Springer International Publishing.
         396

Pavla, S., Hana, V., & Jan, V. (2015). Blended learning: Promising strategic alternative in higher education. Procedia - Social and Behavioral Sciences, 171, 1245 – 1254. https://doi.org/10.1016/j.sbspro.2015.01.238
Pearce, J. M. (2017). Impacts of open source hardware in science and engineering. The Linking Engineering And Society Bridge, 15(47), 24 – 31. https://www.nae.edu/19582/Bridge/174695/174822.aspx
Penn, M. & Mavuru, L. (2020). Assesing pre-service teacher’s reception and attitudes towards virtual laboratory experiments in life sciences. Journal of Baltic Science Education, 19(6A), 1092-1105. https://doi.org/10.33225/jbse/20.19.1092
Picciano, A. G. (2014). Big data and learning analytics in blended learning environments: Benefits and concerns. International Journal of Artificial Intelligence and Interactive Multimedia, 2(7), 35 – 43. https://doi.org/10.9781/ijimai.201
citation:   Ramadhan, M Firman and Mundilarto, Mundilarto  (2023) Pengembangan Model Blended Learning Berbantuan Interface Experiment Instrument System (IEIS) untuk Meningkatkan Keterampilan Praktik dan Berpikir Kritis Mahasiswa Pendidikan Fisika.  S3 thesis, Sekolah Pascasarjana.   
document_url: http://eprints.uny.ac.id/79330/1/disertasi-m.%20firman%20ramadhan-16703261017.pdf