eprintid: 77248 rev_number: 11 eprint_status: archive userid: 1290 dir: disk0/00/07/72/48 datestamp: 2023-03-29 02:22:00 lastmod: 2023-03-29 02:22:00 status_changed: 2023-03-29 02:22:00 type: thesis metadata_visibility: show creators_name: Numan, Mulin creators_name: Retnawati, Heri title: Model Pembelajaran Matematika Berbasis Proyek dalam Kerangka Integrasi STEM dan Islam untuk Pengembangan Kemampuan Berpikir Kritis dan Kemandirian Belajar. ispublished: pub subjects: B5 subjects: D0 subjects: F4 subjects: studi_islam divisions: pps_ip full_text_status: restricted keywords: kemampuan berpikir kritis, kemandirian belajar, pembelajaran matematika, PJBL STEMI abstract: Penelitian ini bertujuan untuk 1) menghasilkan model pembelajaran matematika berbasis proyek dalam kerangka integrasi STEM dan Islam (PJBL STEMI), 2) menguji kelayakan model pembelajaran matematika PJBL STEMI, 3) menguji kepraktisan model pembelajaran matematika PJBL STEMI, dan 4) menguji kefektifan model pembelajaran matematika PJBL STEMI untuk pengembangan kemampuan berpikir kritis dan kemandirian belajar. Penelitian ini merupakan research and development (R & D) yang mengikuti pengembangan Borg and Gall. Subjek penelitian ini peserta didik kelas VIII Madrasah Tsanawiyah (MTs) dan Guru MTs di Kabupaten Purbalingga. Data yang dikumpulkan berupa data kualitatif dan kuantitatif. Analisis kebutuhan menggunakan lembar pengamatan, dokumentasi, dan pedoman wawancara; uji kelayakan model pembelajaran menggunakan skala penilaian; uji kepraktisan model pembelajaran menggunakan lembar observasi dan angket; dan uji keefektifan model pembelajaran menggunakan soal tes kemampuan berpikir kritis, angket kemandirian belajar, lembar observasi kerja sama dan ta’awun peserta didik. Data dianalisis secara deskriptif dan statistik inferensial. Temuan penelitian yaitu 1) model pembelajaran matematika PJBL STEMI yang dihasilkan terdiri atas buku model yang memuat sintaks, prinsip reaksi, sistem sosial, sistem pendukung, dan dampak instruksional dan dampak pengiring dengan perangkat pendukung model berupa rencana pelaksanaan pembelajaran (RPP), lembar kerja peserta didik (LKPD), buku guru, dan bahan ajar, 2) model pembelajaran matematika PJBL STEMI layak digunakan untuk pengembangan kemampuan berpikir kritis dan kemandirian belajar dengan kelayakan buku model pembelajaran, RPP, LKPD, buku guru, dan bahan ajar dalam kategori sangat valid, 3) model pembelajaran matematika PJBL STEMI praktis digunakan untuk pengembangan kemampuan berpikir kritis dan kemandirian belajar peserta didik madrasah tsanawiyah berdasarkan kepraktisan keterlaksanaan pembelajaran dan pengelolaan pembelajaran dengan kategori sangat praktis dan respons peserta didik dengan kategori praktis, dan 4) model pembelajaran matematika PJBL STEMI efektif digunakan untuk pengembangan kemampuan berpikir kritis dan kemandirian belajar peserta didik madrasah tsanawiyah berdasarkan peningkatan kemampuan berpikir kritis dan kemandirian belajar antara peserta didik yang menggunakan model pembelajaran matematika PJBL STEMI lebih baik dibandingkan peserta didik yang menggunakan model pembelajaran yang biasa digunakan di madrasah. date: 2023-01-30 date_type: published institution: Program Pascasarjana department: Ilmu Pendidikan thesis_type: disertasi referencetext: Abdullah, M. A. (2014). Religion, science and culture: An integrated, interconnected paradigm of science. Al-Jami’ah: Journal of Islamic Studies, 52(1), 175–203. https://doi.org/10.14421/ajis.2014.521.175-203 Abdullah, M. A. (2020). Multidisiplin, interdisiplin, & transdisiplin: Metode studi agama & studi Islam di era kontemporer. IB Pustaka. Abdullah, M. A., Kartanegara, R. M., Asy’arie, M., Anwar, S., Kuntowijoyo, & Naim, M. (2004). Integrasi sains-Islam: Mempertemukan epistemologi Islam dan sains. Suka Press. Abdussakir, & Rosimanidar. (2017). Model integrasi matematika dan al-Quran serta praktik pembelajarannya. Seminar Nasional Integrasi Matematika Di Dalam Al- Quran. ABET Engineering Accreditation Commission. (2012). Criteria for Accrediting Engineering Programs. Retrieved from http://www.abet.org/accreditation/%0Aaccreditation-criteria/criteria-for- accrediting-engineering-programs-2016-2017/ Abrami, P. C., Bernard, R. M., Borokhovski, E., Waddington, D. I., Wade, C. A., & Persson, T. (2014). Strategies for teaching students to think critically: A meta- analysis. Review of Educational Research, 1–40. https://doi.org/https://doi.org/10.3102/0034654314551063 ACARA. (2016). STEM connections workbook. (March), 2014–2017. Addington, S., Clemens, H., Howe, R., & Saul, M. (2000). Four reactions to principles and standards for school mathematics. School Science and Mathematics, 47(9), 868–279. https://doi.org/10.1111/j.1949-8594.2001.tb17957.x Adnan, M., Abdullah, N., & Ibharim, L. F. (2018). STEM vs STEAM vs STREAM? [Paper Presentation]. International Conference on Mathematics and Islam. UIN Mataram. Afriana, J., Permanasari, A., & Fitriani, A. (2016). Penerapan project based learning terintegrasi STEM untuk meningkatkan literasi sains siswa ditinjau dari gender. Jurnal Inovasi Pendidikan IPA, 2(2), 202. https://doi.org/10.21831/jipi.v2i2.8561 Agustina, T. W., Rustaman, N. Y., Riandi, R., & Purwianingsih, W. (2018). Plant physiology with mathematic and art religion engineering science and technology approach. Proceedings of the International Conference on Islamic Education, 261, 43–47. https://doi.org/10.2991/icie-18.2018.8 Aizikovitsh-Udi, E., & Amit, M. (2011). Developing the skills of critical and creative thinking by probability teaching. Procedia - Social and Behavioral Sciences, 15, 1087–1091. 269 Aizikovitsh-Udi, E., & Cheng, D. (2015). Developing critical thinking skills from dispositions to abilities: Mathematics education from early childhood to high school. Creative Education, 06(04), 455–462. https://doi.org/10.4236/ce.2015.64045 Aizikovitsh-Udi, E., & Star, J. (2011). The Skill of Asking Good Questions in Mathematics Teaching. Procedia - Social and Behavioral Sciences, 15, 1354– 1358. Akaygun, S., & Aslan-Tutak, F. (2016). STEM images revealing STEM conceptions of pre-service chemistry and mathematics teachers. International Journal of Education in Mathematics, Science and Technology, 4(1), 56–71. https://doi.org/10.18404/ijemst.44833 Akbar, S. (2017). Instrumen perangkat pembelajaran (5th ed.). Remaja Rosda Karya. Al-Ghazali, A. H. M. bin M. (2000). Ihya’ ulumuddin I. Darul Fikr. Alamsyah, T. P., & Turmudi. (2016). Kemampuan berpikir kritis dan kreatif serta self- esteem matematis siswa melalui model advance organizer. Pendidikan Matematika: Kalamatika, I(2), 119–128. Alawiyah, F. (2014). Pendidikan madrasah di Indonesia. Aspirasi, 5(1), 51–58. American Educational Research Association, American Psychological Association, and N. C. on M. in E. (1999). Standards for educational and psychological testing. Anderson, J., English, L., Fitzallen, N., & Symons, D. (2020). The contribution of mathematics education researchers to the current STEM education agenda. In J. Way, C. Attard, J. Anderson, J. Bobis, H. McMaster, & K. Cartwright (Eds.), Research in Mathematics Education in Australasia 2016–2019 (pp. 27–57). https://doi.org/10.1007/978-981-15-4269-5_3 Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., ... Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives (L. W. Anderson & D. R. Krathwohl, Eds.). Longman. Anh, D. T. K., & Marginson, S. (2013). Global learning through the lens of Vygotskian sociocultural theory. Critical Studies in Education, 54(2), 143–159. https://doi.org/10.1080/17508487.2012.722557 Apedoe, X. S., Reynolds, B., Ellefson, M. R., & Schunn, C. D. (2008). Bringing engineering design into high school science classrooms: The heating/cooling unit. Journal of Science Education and Technology, 17(5), 454–465. Applebee, A. N., Adler, M., & Flihan, S. (2007). Interdisciplinary curricula in middle and high school classrooms: Case studies of approaches to curriculum and instruction. American Educational Research Journal, 44(4), 1002–1039. Arends, R. I. (1997). Classroom instruction and management. MC Grow-Hill 270 Companies, Inc. Arlinwibowo, J., Kartowagiran, B., & Retnawati, H. (2020). Model penilaian capaian belajar matematika dengan framework STEM. UNY Press. Ashcroft, K., & Palacio, D. (1996). Researching into assessment and evaluation in colleges and universities. Kogan Page. Asyafah, A. (2019). Menimbang model pembelajaran: Kajian teoretis-kritis atas model pembelajaran dalam pendidikan Islam. TARBAWY : Indonesian Journal of Islamic Education, 6(1), 1. https://doi.org/10.17509/t.v6i1.19459 Atman, C. J., Adams, R. S., Cardella, M. E., Truns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioner. Journal of Engineering Education, 96(4), 359–379. https://doi.org/10.1002/j.2168-9830.2007.tb00945.x Aziz, N. (2019). Pemikiran Fazlur Rahman tentang filsafat pendidikan dalam Islam. Manarul Qur’an, 19(2), 82–93. Azwar, S. (2012). Reliabilitas dan validitas. Pustaka Belajar. Bacanli, H., Dombayci, M. A., Demir, M., & Tarhan, S. (2011). Quadruple thinking: Creative thinking. Procedia - Social and Behavioral Sciences, 12, 536–544. https://doi.org/10.1016/j.sbspro.2011.02.065 Bada, & Olusegun, S. (2015). Constructivism learning theory: A paradigm for teaching and learning. IOSR Journal of Research & Method in Education (IOSR-JRME), 5(6), 66–70. Bagir, H., & Abdalla, U. A. (2020). Sains “religius” agama “saintifik.” Mizan. Bagnato, S. J. (2007). Authentic assessment for early childhood intervention: Best practice. The Guilford Press. Bahrum, S., Wahid, N., & Ibrahim, N. (2017). Integration of STEM education in Malaysia and why to STEAM. International Journal of Academic Research in Business and Social Sciences, 7(6), 645–654. https://doi.org/10.6007/ijarbss/v7- i6/3027 Bak, A., & Kim, K. Y. (2014). The effects of STEAM program on the scientific communication skills and the learning flow of elementary gifted students. Korean Elementary Science Education, 452, 439–452. Ball, A., Joyce, H. D., & Anderson-Butcher, D. (2016). Exploring 21st century skills and learning environments for middle school youth. International Journal of School Social Work, 1(1). https://doi.org/10.4148/2161-4148.1012 Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice Hall. 271 Banihashem, S. K., Farrokhnia, M., Badali, M., & Noroozi, O. (2022). The impacts of constructivist learning design and learning analytics on students’ engagement and self-regulation. Innovations in Education and Teaching International, 59(4), 442– 452. https://doi.org/10.1080/14703297.2021.1890634 Banks, F., & Barlex, D. (2014). Teaching STEM in the secondary school: Helping teachers meet the challenge. Routledge. Bartlett, J. E. (2002). Analysis of motivational orientation and learning strategies of high school business students. Business Education Forum, 56(4), 18–23. Behnagh, R. F., & Yasrebi, S. (2020). An examination of constructivist educational technologies: Key affordances and conditions. British Journal of Educational Technology, 51(6), 1907–1919. https://doi.org/10.1111/bjet.13036 Bell, F. H. (1978). Teaching and learning mathematics (in secondary schools). WC Brown Company. Bell, S. (2010). Project-based learning for the 21st century: Skills for the future. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 83(2), 39– 43. https://doi.org/10.1080/00098650903505415 Berlin, D. F., & White, A. L. (1995). Connecting school science and mathematics. In P. A. House & A. F. Coxford (Eds.), Connecting mathematics across the curriculum. National Council of Teachers of Mathematics. Beswick, K., & Fraser, S. (2019). Developing mathematics teachers’ 21st century competence for teaching in STEM contexts. ZDM - Mathematics Education, 51(6), 955–965. https://doi.org/10.1007/s11858-019-01084-2 Beyer, B. K. (1995). Critical thinking. Phi Delta Kappa Educational Foundation. Bicer, A., Capraro, R. M., & Capraro, M. M. (2017). Integrated STEM assessment model. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3959–3968. https://doi.org/10.12973/eurasia.2017.00766a Billingsley, B., Riga, F., Taber, K. S., & Newdick, H. (2014). Secondary school teachers’ perspectives on teaching about topics that bridge science and religion. Curriculum Journal, 25(3), 372–395. https://doi.org/10.1080/09585176.2014.920264 Billingsley, B., Taber, K. S., Riga, F., & Newdick, H. (2013). Erratum to: Secondary school students’ epistemic insight into the relationships between science and religion - a preliminary enquiry. Research in Science Education, 43(1733). https://doi.org/10.1007/s11165-012-9325-y Boekaerts, M. (1999). Self-regulated learning: where we are today. International Journal of Educational Research, 31, 445–457. Boekaerts, M. (2016). Engagement as an inherent aspect of the learning process. Learning and Instruction, 43, 76–83. 272 https://doi.org/10.1016/j.learninstruc.2016.02.001 Boekaerts, M., & Corno, L. (2005). Self-Regulation in the classroom: A perspective on assessment and intervention. Applied Psychology: An International Review, 54(2), 199–231. Borg, W. R., & Gall, M. D. (1983). Educational research. Longman. Branch, L. J. (2015). The impact of project-based learning and technology on student achievement in mathematics. In New media, knowledge practices and multiliteracies (pp. 259–268). https://doi.org/10.1007/978-981-287-209-8 Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school. National Academy Press. Brophy, J. (2004). Motivating students to learn (2nd ed.). Erlbaum. Brown, A. L., & Campione, J. C. (1994). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 229–270). MIT Press. Brown, J. S., Collins, A., & Duguid, P. (1989). Situated Cognition and the Culture of Learning. Educational Researcher, 18(1), 32–42. Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). Routledge. Bureekhampun, S., & Mungmee, T. (2020). STEAM education for preschool students: Patterns, activity designs and effects. Journal for the Education of Gifted Young Scientists, 8(3), 1201–1212. https://doi.org/10.17478/JEGYS.775835 Burlbaw, L. M., Ortwein, M. J., & Williams, J. K. (2013). From the project method to STEM project-based learning: the historical context. In R. M. Capraro, M. M. Capraro, & J. R. Morgan (Eds.), STEM Project-Based Learning: An Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach (pp. 7– 14). Sense Publisers. Butler, D. L. (2002). Individualizing instruction in self-regulated learning. Theory into Practice, 41(2), 81–92. https://doi.org/10.1207/s15430421tip4102_4 Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30–36. Cáceres, M., Nussbaum, M., & Ortiz, J. (2020). Integrating critical thinking into the classroom: A teacher’s perspective. Thinking Skills and Creativity, 37(October 2018), 100674. https://doi.org/10.1016/j.tsc.2020.100674 Capraro, M. M., & Jones, M. (2013). Interdisciplinary STEM project-based learning. In R. M. Capraro, M. M. Capraro, & J. R. Morgan (Eds.), STEM Project-Based Learning: An Integrated Science, Technology, Engineering, and Mathematics 273 (STEM) Approach (Second, pp. 47–54). Sense Publisers. Capraro, M. M., Whitfield, J. G., Etchells, M. J., & Capraro, R. M. (2016). A companion to interdisciplinary STEM project-based learning. Sense Publisers. Capraro, R. M., Capraro, M. M., & Morgan, J. R. (2013). STEM project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach. Sense Publisers. Capraro, R. M., & Corlu, M. S. (2013). Changing views on assessment for STEM project-based learning. STEM Project-Based Learning an Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach, 109–118. https://doi.org/10.1007/978-94-6209-143-6_12 Cavanagh, S. (2008). Where is the ‘T’ in STEM? Education Week, 27(30), 17–19. Çevik, M. (2018). Impacts of the project based (PBL) science, technology, engineering and mathematics (STEM) education on academic achievement and career interests of vocational high school students. Pegem Egitim ve Ogretim Dergisi, 8(2), 281– 306. https://doi.org/10.14527/pegegog.2018.012 Chambers, P. (2008). Teaching mathematics. SAGE Publication. Chen, M. (2001). A potential limitation of embedded-teaching for formal learning. In J. Moore & K. Stenning (Eds.), Proceedings of the Annual Meeting of the Cognitive Science Society (pp. 194–199). Lawrence Erlbaum Associates, Inc. Chu, H. E., Martin, S. N., & Park, J. (2019). A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17(7), 1251–1266. https://doi.org/10.1007/s10763-018-9922-y Cleary, T. J., & Zimmerman, B. J. (2004). Self-regulation empowerment program: a school-based program to enhance self-regulated and self-motivated cycles of student learning. Psychology in the Schools, 41(5). https://doi.org/10.1002/pits.10177 Coad, L. (2016). The M in STEM: What is it really? Australian Mathematics Teacher, 72(2), 3–6. Colley, K. (2008). Project-based science instruction: A primer–an introduction and learning cycle for implementing project-based science. The Science Teacher, 75(8), 23–28. Connors-Kellgren, A., Parker, C. E., Blustein, D. L., & Barnett, M. (2016). Innovations and challenges in project-based STEM education: Lessons from ITEST. Journal of Science Education and Technology. https://doi.org/10.1007/s10956-016-9658-9 Cowan, P. (2006). Teaching matematics a handbook for primary and secondary school teacher. Routledge. 274 Danczak, S., Thompson, C., & Overton, T. (2017). What does the term Critical Thinking mean to you? A qualitative analysis of chemistry undergraduate, teaching staff and employers’ views of critical thinking. Chemistry Education Research and Practice, 8, 420–434. De Corte, E., Mason, L., Depaepe, F., & Verschaffel, L. (2011). Self-regulation of mathematical knowledge and skills. In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 155–172). Routledge. De Lange, J. (2003). Mathematics for literacy. Quantitative Literacy: Why Numeracy Matters for Schools and Colleges, 80, 75–89. de Vries, H. B., & Lubart, T. I. (2019). Scientific creativity: Divergent and convergent thinking and the impact of culture. Journal of Creative Behavior, 53(2), 145–155. https://doi.org/10.1002/jocb.184 Demirbaga, K. K. (2018). A comparative analysis: Vygotsky’s sociocultural theory and Montessori’s theory. Annual Review of Education, Communication & Language Sciences, 15(1), 113–126. Detikcom. (2019). Berdasar survei PISA, kualitas pendidikan RI 2018 turun dibanding 2015. Detik.Com. Retrieved from https://news.detik.com/berita/d- 4808601/berdasar-survei-pisa-kualitas-pendidikan-ri-2018-turun-dibanding-2015 DeVries, R. (2000). Vygotsky, Piaget, and education: a reciprocal assimilation of theories and educational practices. New Ideas in Psycology, 18(1), 187–213. Dierking, L. D., & Falk, J. H. (2016). 2020 Vision: Envisioning a new generation of STEM learning research. Cultural Studies of Science Education, 11(1), 1–10. https://doi.org/10.1007/s11422-015-9713-5 Ditjen Diktis. (2019). Pedoman implementasi integrasi ilmu di perguruan tinggi keagamaan Islam. Direktorat Pendidikan Tinggi Keagamaan Islam Direktorat Jenderal Pendidikan Islam Kementerian Agama Republik Indonesia. Educational Technology Division, M. of E. (2006). Project-based learning handbook: Educating the millenial learner. Communications and Training Sector. Eggen, P. D., & Kauchak. (1995). Strategis for teachers teaching content and thinking skills. Prentice Hall. Elder, L., & Paul, R. (2013). Critical thinking: Intellectual standards essential to reasoning well within every domain of thought. Journal of Developmental Education, 36(3), 34–35. Enderson, M. C., & Grant, M. R. (2013). Emerging engineers design a paper table. Mathematics Teaching in the Middle School, 18(6), 362–369. English, L. D. (2015). STEM: Challenges and opportunities for mathematics education. Proceedings of the 39th Conference of the International Group for the Psychology 275 of Mathematics Education, 1, 4–18. English, L. D. (2016a). Advancing mathematics education research within a STEM environment. In K. Fry, S. Dole, M. Goos, K. Maker, A. Bennison, & J. . Visnovska (Eds.), Research in Mathematics Education in Australasia 2012–2015 (pp. 353–371). https://doi.org/10.1007/978-981-10-1419-2 English, L. D. (2016b). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 1–8. https://doi.org/10.1186/s40594-016-0036-1 English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15, 5–24. https://doi.org/10.1007/s10763-017-9802-x English, L. D., King, D., & Smeed, J. (2017). Advancing integrated STEM learning through engineering design: Sixth- grade students’ design and construction of earthquake resistant buildings. Journal OfEducational Research, 110(3), 255–271. https://doi.org/doi.org/10.1080/00220671.2016.1264053 English, M. C., & Kitsantas, A. (2013). Supporting student self-regulated learning in problem- and project-based learning. Interdisciplinary Journal of Problem-Based Learning, 7(2), 128–150. https://doi.org/10.7771/1541-5015.1339 Ennis, R. H. (1993). Critical thinking assessment. Theory Into Practice, 32(3), 179– 186. https://doi.org/10.1017/CBO9781107415324.004 Ennis, R. H. (1996). Critical thinking. Prentice Hall. Ennis, R. H. (2011). Critical thinking: Reflection and perspective. Inquiry: Critical Thinking Across the Disciplines, 26(1), 5–19. https://doi.org/10.5840/inquiryctnews201126215 Environmental Protection Agency. (2008). Ideas for science fair projects on surface water quality topics for middle school students and teachers. Retrieved from http://water.epa.gov/learn/resources/upload/2008_12_08_learn_science- projects.pdf. Etherington, M. B. (2011). Investigative primary science: A problem-based learning approach. Australian Journal of Teacher Education, 36(9), 36–57. Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. California State University. Facione, P. A. (2015). Critical thinking: What it is and why it counts. Measured Reasons LLC. Fani, T., & Ghaemi, F. (2011). Implications of Vygotsky’s zone of proximal development (ZPD) in teacher education: ZPTD and self-scaffolding. Procedia - Social and Behavioral Sciences, 29(Iceepsy), 1549–1554. https://doi.org/10.1016/j.sbspro.2011.11.396 276 Felder, R. M., & Brent, R. (2016). Teaching and learning STEM: A practical guide. Jossey-Bass. Fernandes, H. J. X. (1984). Evaluation of educational program. National Education Planning, Evaluating and Curriculum Development. Fernández-Santín, M., & Feliu-Torruella, M. (2020). Developing critical thinking in early childhood through the philosophy of Reggio Emilia. Thinking Skills and Creativity, 37. https://doi.org/10.1016/j.tsc.2020.100686 Fitzallen, N. (2015). STEM education: What does mathematics have to offer? 38th Annual Conference of the Mathematics Education Research Group of Australasia, 1, 237–244. Fonna, N. (2019). Pengembangan revolusi industri 4.0 dalam berbagai bidang. Guepedia. Fortus, D., Krajcik, J., Charles, R., Marx, R. W., & Mamlok-naaman, R. (2005). Design-based science and real-world problem-solving. International Journal of Science Education, 27(7), 855–879. https://doi.org/10.1080/09500690500038165 Gale, J., Alemdar, M., Lingle, J., & Newton, S. (2020). Exploring critical components of an integrated STEM curriculum: An application of the innovation implementation framework. International Journal of STEM Education, 7, 1–17. Gardner, M., & Tillotson, J. W. (2019). Interpreting integrated STEM: Sustaining pedagogical innovation within a public middle school context. International Journal of Science and Mathematics Education, 17(7), 1283–1300. https://doi.org/10.1007/s10763-018-9927-6 George, W. (2017). Bringing van Hiele and Piaget together: A case for topology in early mathematics learning. Journal of Humanistic Mathematics, 7(1), 105–116. https://doi.org/10.5642/jhummath.201701.08 Glaser, E. (1941). An experience in the development of critical thinking. Advanced School of Education at Teacher’s College, Columbia University. Goldman, S. R., & Petrosino, A. J. (1999). Design principles for instruction in content domains: lessons from research on expertise and learning. In F. T. Durso, R. S. Nickerson, R. W. Schvaneveldt, S. T. Dumais, D. S. Lindsay, & M. T. H. Chi (Eds.), Handbook of applied cognition (pp. 595–627). John Wiley & Sons. Gravemeijer. (1994). Developing realistic mathematics education. Freundenthal Institute. Gray, K., & Koncz, A. (2018). The key attributes employers seek on students’ resumes. Retrieved from http://www.naceweb.org/about-us/press/2017/thekey- %0Aattributes-employers-seek-on-students-resumes/ website: http://www.naceweb.org/about-us/press/2017/thekey-%0Aattributes-employers- seek-on-students-resumes/ 277 Guo, W., Lau, K. L., & Wei, J. (2019). Teacher feedback and students’ self-regulated learning in mathematics: A comparison between a high-achieving and a low- achieving secondary schools. Studies in Educational Evaluation, 63(May), 48–58. https://doi.org/10.1016/j.stueduc.2019.07.001 Gutek, G. L. (1974). Philosophical alternatives in education. Bell & Howell Company. Guzey, S. S., Harwell, M., & Moore, T. (2014). Development of an instrument to assess attitudes toward science, technology, engineering, and mathematics (STEM). School Science and Mathematics, 114(6), 271–279. https://doi.org/10.1111/ssm.12077 Guzey, S. S., Moore, T. J., Harwell, M., & Moreno, M. (2016). STEM integration in middle school life science: Student learning and attitudes. Journal of Science Education and Technology, 25(4), 550–560. https://doi.org/10.1007/s10956-016- 9612-x Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis (7th ed.). Pearson Education Limited. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (Second). SAGE Publication, Inc. Halpern, D. F. (2001). Assessing the effectiveness of critical thinking instruction. The Journal of General Education, 50(4), 270–286. Han, S., & Rosli, R. (2016). The effect of science, technology, engineering, and mathematics (STEM) project based learning (PBL) on students’ achievement in four mathematics topics. Journal of Turkish Science Education, 13(Special), 3–29. https://doi.org/10.12973/tused.10168a Hannover Research. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. National Academies Press. Happy, N., & Widjajanti, D. B. (2014). Keefektifan PBL ditinjau dari kemampuan berpikir kritis dan kreatif matematis, serta self-esteem siswa SMP. Jurnal Riset Pendidikan Matematika, 1(1), 48. https://doi.org/10.21831/jrpm.v1i1.2663 Hariyanto, F. A., & Esser, B. R. (2018). Kemampuan berpikir kritis pada siswa madrasah aliyah di Lombok Barat. JISIP, 3(1), 1–8. Hendrowati, T. Y. (2015). Pembentukan pengetahuan lingkaran melalui pembelajaran asimilasi dan akomodasi teori konstruktivisme Piaget. Jurnal E-DuMath, 1(1), 1– 16. Herman, T. (2007). Pembelajaran berbasis masalah untuk meningkatkan kemampuan berpikir matematis tingkat tinggi siswa sekolah menengah pertama. EDUCATONIST, I(I), 47–56. 278 Hobbs, L., Clark, J. C., & Plant, B. (2018). Successful students – STEM program: Teacher learning through a multifaceted vision for STEM education. In R. Jorgensen & K. Larkin (Eds.), STEM education in the junior secondary: The State of play (pp. 133–168). Springer. Honey, M. A., Pearson, G., & Schweingruber, H. (2014). STEM integration in K-12 education: status, prospects, and an agenda for research. https://doi.org/10.17226/18612 Howes, A., Kaneva, D., Swanson, D., & Williams, J. (2013). Re-envisioning STEM education: curriculum, assessment and integrated, interdisciplinary studies. The University of Manchester. Hudojo, H. (1990). Strategi mengajar belajar matematika. IKIP Malang. Hudojo, H. (2005). Pengembangan kurikulum dan pembelajaran matematika. Universitas Negeri Malang Press. Hurley, M. (2001). Reviewing integrated science and mathematics: the search for evidence and definitions from new perspectives. School Science and Mathematics, 101, 259–268. Hynes, M. M. (2012). Middle-school teachers’ understanding and teaching of the engineering design process: a look at subject matter and pedagogical content knowledge. International Journal of Technology and Design Education, 2012(22), 345–360. https://doi.org/10.1007/s10798-010-9142-4 Ibáñez, M., & Delgado-kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education. https://doi.org/10.1016/j.compedu.2018.05.002 Ilma, R., Putri, I., & Aisyah, N. (2020). Learning integer with realistic mathematics education approach based on Islamic values. Journal on Mathematics Education, 11(3), 363–384. Isma’il, A.-I. A. F. (1994). Lubabut tafsir min Ibni Katsir. Mu-assasah Daar al-Hilaal Cairo. Jacques, L. A. (2017). What does project-based learning (PBL) look like in the mathematics classroom? American Journal of Educational Research, 5(4), 428– 433. https://doi.org/10.12691/education-5-4-11 Jihad, A. (2008). Pengembangan kurikulum matematika: Tinjauan teoritis dan historis. Multi Pressindo. John, M., Bettye, S., Ezra, T., & Robert, W. (2016). A formative evaluation of a southeast high school integrative science, technology, engineering, and mathematics (STEM) academy. Technology in Society, 45, 34–39. https://doi.org/10.1016/j.techsoc.2016.02.001 Johnson, C. E., Yates, K., & Sullivan, M. E. (2019). Building a framework for self- 279 regulated learning in surgical education: A delphi consensus among experts in surgical education. Journal of Surgical Education, 76(6), e56–e65. https://doi.org/10.1016/j.jsurg.2019.06.012 Johnson, D. W., & Johnson, R. (1989). Cooperation and competition: Theory and research. Interaction Book Compa. Joyce, B., Weil, M., & Calhoun, E. (2015). Models of teaching. Pearson. Kasza, P., & Slater, T. F. (2017). A survey of best practices and key learning objectives for successful secondary school STEM academy settings. Contemporary Issues in Education Research, 10(1), 53–66. Katminingsih, Y. (2009). Vygotsky dan teorinya dalam mempengaruhi desain pembelajaran matematika. Cakrawala Pendidikan, 11(1), 93–105. Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1). https://doi.org/10.1186/s40594-016-0046-z Kemendikbud RI. Peraturan Menteri Pendidikan dan Kebudayaan Nomor 37, Tahun 2018, tentang Kompetensi Inti dan Kompetensi Dasar Pelajaran pada Kurikulum 2013 pada Pendidikan Dasar dan Pendidikan Menengah. , (2018). Kennedy, T. J. (2014). Engaging students in STEM education. Science Education International, 25(3), 246–258. Kertil, M., & Gurel, C. (2016). Mathematical modeling: A bridge to STEM education. International Journal of Education in Mathematics, Science and Technology, 4(1), 44. https://doi.org/10.18404/ijemst.95761 Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. In J. Kilpatrick, J. Swafford, & B. Findell (Eds.), Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social Sciences and Education. National Academy Press. Klein, J. I., Taveras, S., King, S. H., Commitante, A., Curtis-Bey, L., & Stripling, B. (2009). Project-based learning: Inspiring middle school students to engage in deep and active learning. In NYC Department of Education. NYC Department of Education. Klein, J. T. (2004). Interdisciplinarity and complexity: An evolving relationship. ECO Special Double Issue, 6(1), 2–10. Klein, J. T. (2008). Evaluation of interdisciplinary and transdisciplinary research: A literature review. American Journal of Preventive Medicine, 35(2S), 116–123. https://doi.org/10.1016/j.amepre.2008.05.010 Klum, G. (1994). Mathematics assessment: What works in the classroom. Jossey-Bass. Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of 280 the literature. Improving Schools, 19(3), 267–277. Koschmann, T., Kelson, A. C., Feltovich, P. J., & Barrows, H. S. (1996). Computer- supported problem-based learning: A principled approach to the use of computers in collaborative learning. In T. D. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm. (pp. 83–124). Erlbaum. Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory Into Practice, 41(4), 352. Krulik, S., & Rudnick, J. A. (1995). The new sourcebook for teaching reasoning and problem solving in elementary school. Allyn & Bacon. Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28(2), 16–46. https://doi.org/10.3102/0013189X028002016 Kurup, P. M., Li, X., Powell, G., & Brown, M. (2019). Building future primary teachers’ capacity in STEM: based on a platform of beliefs, understandings and intentions. International Journal of STEM Education, 6. Lai, E. R., & Viering, M. (2012). Assessing 21st century skills: Integrating research findings. In Annual Meeting of the National Council on Measurement in Education. Larsson, K. (2017). Understanding and teaching critical thinking—A new approach. International Journal of Educational Research, 84, 32–42. https://doi.org/https:// doi.org/10.1016/j.ijer.2017.05.004 Lasa, A., Abaurrea, J., & Iribas, H. (2020). Mathematical content on STEM activities. Journal on Mathematics Education, 11(3), 333–346. https://doi.org/10.22342/JME.11.3.11327.333-346 Lederman, N. G., & Niess, M. L. (1997). Integrated, interdisciplinary, or thematic instruction? Is this a question or is it questionable semantics? School Science and Mathematics, 97(2), 57–58. Lee, M. (2007). Spark up the American revolution with math, science, and more: An example of an integrative curriculum unit. The Social Studies, 98(4), 159–164. Leung, A. (2019). Exploring STEM pedagogy in the mathematics classroom: A tool- based experiment lesson on estimation. International Journal of Science and Mathematics Education, 17(7), 1339–1358. https://doi.org/10.1007/s10763-018- 9924-9 Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as “given” in STEM education. International Journal of STEM Education, 6. Lin, J. W. (2018). Effects of an online team project-based learning environment with group awareness and peer evaluation on socially shared regulation of learning and self-regulated learning. Behaviour and Information Technology, 37(5), 445–461. https://doi.org/10.1080/0144929X.2018.1451558 281 Lince, R. (2016). Creative thinking ability to increase student mathematical of junior high school by applying models numbered heads together. Journal of Education and Practice, 7(6), 206–212. Linn, M. C., Davis, E. A., & Eylon, B. S. (2004). The scaffolded knowledge integration framework for instruction. In M. C. Linn, E. A. Davis, & P. Bell (Eds.), Internet environments for science education (pp. 47–72). Lawrence Erlbaum Associates. Lipman, M. (2003). Thinking in education. Cambridge University Press. Litchfield, B. C., & Dempsey, J. V. (2015). Authentic assessment of knowledge, skills, and attitudes. New Directions for Teaching and Learning, 2015(142), 65–80. https://doi.org/https://doi.org/10.1002/tl.20130. Lowrie, T., Leonard, S., & Fitzgerald, R. (2018). STEM practices: A translational framework for large-scale STEM education design. Educational Design Research, 2(1). Loyens, S. M. M., Magda, J., & Rikers, R. M. J. P. (2008). Self-directed learning in problem-based learning and its relationships with self-regulated learning. Educational Psychology Review, 20(4), 411–427. https://doi.org/10.1007/s10648- 008-9082-7 Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The role of mathematics in interdisciplinary STEM education. ZDM - Mathematics Education, 51(6), 869– 884. https://doi.org/10.1007/s11858-019-01100-5 Maričić, S., & Špijunović, K. (2015). Developing critical thinking in elementary mathematics education through a suitable selection of content and overall student performance. Procedia - Social and Behavioral Sciences, 180(11), 653–659. https://doi.org/10.1016/j.sbspro.2015.02.174 Markham, T., Larmer, J., & Ravitz, J. (2003). Project based learning handbook: A guide to standards-focused project based learning for middle and high school teachers (Second Edi). Buck Institute for Education. Marsigit, Condromukti, R., Setiana, D. S., & Hardianti, S. (2018). Pengembangan pembelajaran matematika berbasis etnomatematika. Seminar Nasional Etnomatnesia, 20–38. Mas’ud, A. (2004). Antologi studi agama dan pendidikan. Aneka Ilmu. Mcdonald, C. V. (2016). STEM education: A review of the contribution of the disciplines of science, technology, engineering and mathematics. Science Education International, 27(4), 530–569. McMorris, J. E. (2016). The role of religion and gender in shaping STEM education and workforce participation (Doctoral dissertation). The University of Texas at Austin. McPeck, J. E. (1984). Stalking beasts, but swatting flies: The Teaching of critical 282 thinking. Canadian Journal of Education / Revue Canadienne de l’éducation, 9(1), 28. https://doi.org/10.2307/1494448 McPeck, J. E. (1990). Critical thinking and subject specificity: A reply to Ennis. Educational Researcher, 19(4), 10–12. https://doi.org/10.3102/0013189X019004010 Mergendoller, J., Markham, T., Ravitz, J., & Larmer, J. (2006). Pervasive management of project-based learning. In C. Evertson & S. Weinstein (Eds.), Handbook of classroom management: Research, practice, and contemporary issues (pp. 583– 615). Lawrence Erlbaum. Miller, J. (2019). STEM education in the primary years to support mathematical thinking: using coding to identify mathematical structures and patterns. ZDM - Mathematics Education, 51(6), 915–927. https://doi.org/10.1007/s11858-019- 01096-y Moore, T. J., Johnson, C. C., Peters-Burton, E. E., & Guzey, S. S. (2016). STEM road map: A framework for integrated STEM education. Routledge Taylor & Franc is Group. Moore, Tamara J., Johnson, C. C., Peters-Burton, E. E., & Guzey, S. S. (2016). The need for a STEM road map. In Carla C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education. https://doi.org/10.4324/9781315753157-1 Morrison, J., & Bartlett, R. V. (2009). STEM as a curriculum: An experiental approach. Education Week, 23, 28–31. Retrieved from papers3://publication/uuid/48C36DF6-30CA-42ED-876D-0D4214A1F890 Mubarok, H., Safitri, N. S., & Adam, A. S. (2020). The novelty of religion and art: Should we combine with STEM education? Studies in Philosophy of Science and Education, 1(3), 97–103. Mujis, D., & Reynolds, D. (2018). Effective teaching: Evidence and practice. SAGE Publication. Munadi, M. (2016). Integration of Islam and science: Study of two Science pesantrens (Trensain) in Jombang and Sragen. Jurnal Pendidikan Islam, 5(2), 287. https://doi.org/10.14421/jpi.2016.52.287-303 Muslih. (2018). Pembelajaran ayat-ayat kawnīyah di SMA Trensains 2 Pesantren Tebuireng Jombang. ISLAMICA: Jurnal Studi Keislaman, 12(2), 455–480. https://doi.org/https://doi.org/10.15642/islamica.2018.12.2.455-480 Nadelson, L., Seifert, A., Moll, A., & Coats, B. (2012). i-STEM summer institute: an integrated approach to teacher professional development in STEM. Journal of STEM Education, 13(2), 69–83. Narciss, S., Proske, A., & Koerndle, H. (2007). Promoting self-regulated learning in 283 web-based learning environments. Computers in Human Behavior, 23(3), 1126– 1144. https://doi.org/10.1016/j.chb.2006.10.006 Nashir, R. (2010). Mencari tipologi format pendidikan ideal. Pustaka Pelajar. Nathan, M. J., Koedinger, K. R., & Alibali, M. W. (2001). Expert blind spot: When content knowledge eclipses pedagogical content knowledge. In L. Chen (Ed.), Proceedings of the Third International Conference on Cognitive Science (pp. 644– 648). Beijing: University of Science and Technology of China Press. NCTM. (2000). Principles and standards for school mathematics. NCTM. Inc. Newman, S. (2018). Vygotsky, Wittgenstein, and sociocultural theory. Journal for the Theory of Social Behaviour, 48(3), 350–368. https://doi.org/10.1111/jtsb.12174 Nicolescu, B. (2002). Monifesto of transdisciplinarity. State University of New York Press. Nieven, N. (1999). Design approaches and tools in education and training. Kluwer Academic Publishers. Ningsih, R., & Nurrahmah, A. (2016). Pengaruh kemandirian belajar dan perhatian orang tua terhadap prestasi belajar matematika. Jurnal Formatif, 6(1), 73–84. Nitko, A. J., & Brookhart, S. M. (2011). Educational assessment of students. Pearson/Allyn & Bacon. NRC. (2012). Education for life and work: Developing transferable knowledge and skills in the 21st century. The National Academies Press. NRC. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. The National Academies of Science. Nugroho, O. F., Permanasari, A., Firman, H., & Riandi. (2019). STEM approach based on local wisdom to enhance sustainability literacy. AIP Conference Preceedings, 2194(020072), 1–5. Nurhaifa, I., Hamdu, G., & Suryana, Y. (2020). Rubrik penilaian kinerja pada pembelajaran STEM berbasis keterampilan 4C. Indonesian Journal of Primary Education, 4(1), 101–110. Retrieved from https://ejournal.upi.edu/index.php/IJPE/article/view/24742 Nurrenbern, S. C. (2001). Piaget’s theory of intellectual development revisited. Journal of Chemical Education, 78(8), 1107–1110. OECD. (2016). Programme for international student assessment (PISA) result from PISA 2015. Retrieved from https://www.oecd.org/pisa/PISA-2015-Indonesia.pdf OECD. (2019). Programme for international student assessment (PISA) result from PISA 2018. Retrieved from https://www.oecd.org/pisa/publications/PISA2018_CN_IDN.pdf 284 Okezone. (2019). Laporan PISA 2018, kualitas pendidikan Indonesia masih di level bawah. Retrieved from https://news.okezone.com/read/2019/12/04/65/2137857/laporan-pisa-2018- kualitas-pendidikan-indonesia-masih-di-level-bawah Olfos, R., & Zulantay, H. (2007). Reliability and validity of authentic assessment in a web based course. Educational Technology & Society, 10(4), 156–173. Oliva, P. F. (2009). Developing the curriculum. Pearson. Ornstein, A. C., & Hunkins, F. P. (2018). Curriculum: Foundation, principles, and issues. Pearson Education Limited. Padgett, A. G. (2005). God versus technology? Science, secularity, and the theology of technology. Zygon, 40(3), 577–584. https://doi.org/10.1111/j.1467- 9744.2005.00689.x Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in Psychology, 8(April), 1–28. https://doi.org/10.3389/fpsyg.2017.00422 Paradesa, R. (2015). Kemampuan berpikir kritis matematis mahasiswa melalui pendekatan konstruktivisme pada matakuliah matematika keuangan. Jurnal Pendidikan Matematika JPM RAFA, 1(2), 306–325. Pardjono. (2002). Active learning: The Dewey, Piaget, Vygotsky and constructivist theory perspectives. Jurnal Ilmu Pendidikan, Vol. 9, pp. 163–178. Paris, S. G., & Paris, A. H. (2001). Classroom application of research on self-regulated learning. Educational Psychologist, 36(2), 103–112. https://doi.org/10.1207/S15326985EP3602 Parwati, N. N. (2012). Pembelajaran matematika berorientasi open-ended problem solving. Jurnal Ilmu Pendidikan, 18(1), 65–70. Paul, R., & Elder, L. (2013). Critical thinking: intellectual standards essential to reasoning well within every domain of human thought (part two). Journal of Developmental Education, 37(3), 34. Pearl, A. O., Rayner, G., Larson, I., & Orlando, L. (2019). Thinking about critical thinking: An industry perspective. Industry & Higher Education, 33(2), 116–126. Perry, N. E., Phillips, L., & Hutchinson, L. R. (2006). Preparing student teachers to support for self-regulated learning. Elementary School Journal, (106), 237–254. Pfeiffer, H. D., Ignatov, D. I., & Poelmans, J. (2013). Conceptual structures for STEM research and education. 20th International Conference on Conceptual Structures, ICCS 2013. Springer. Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human Development, 15, 1–12. 285 Pimthong, P., & Williams, J. (2018). Preservice teachers’ understanding of STEM education. Kasetsart Journal of Social Sciences, 1–7. https://doi.org/10.1016/j.kjss.2018.07.017 Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning and achievement. Journal of Educational Psychology, 92(3), 544–555. Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self- regulated learning in college students. Educational Psychology Review, 16(4), 385–407. https://doi.org/http://www.jstor.com/stable/23363878 Pintrich, P. R., & Zusho, A. (2002). The development of academic self-regulation: The role of cognitive and motivational factors. Development of Achievement Motivation, 1446(2), 249–284. https://doi.org/10.1016/b978-012750053-9/50003- 6 PMA. Peraturan Menteri Agama RI Nomor 912 tentang Kurikulum Madrasah 2013 Mata Pelajaran Pendidikan Agama Islam dan Bahasa Arab. , (2013). Prabowo, Anggit, Anggoro, R. P., & Rahmawati, U. (2018). Profil hasil ujian nasional materi matematika SMP/MTs. EduMa, 7(2), 31–39. Prabowo, Ardhi, & Juandi, D. (2020). Analisis situasi didaktis dalam pembelajaran matematika berbantuan ICT pada siswa SMP. PYTHAGORAS: Jurnal Pendidikan Matematika, 15(1), 1–12. Prasetyo, B. (2011). Metode penelitian kuantitatif. Raja Grafindo Persada. Priatna, N., Lorenzia, S. A., & Widodo, S. A. (2020). STEM education at junior high school mathematics course for improving the mathematical critical thinking skills. Journal for the Education of Gifted Young Scientists, 8(3), 1173–1184. https://doi.org/10.17478/JEGYS.728209 Pryor, C. R., & Kang, R. (2013). Project-based learning: An interdisciplinary approach for integrating social studies with STEM. In R. M. Capraro, M. M. Capraro, & J. R. Morgan (Eds.), STEM project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach (Second, pp. 129– 138). Sense Publisers. Purbaningrum, K. A. (2017). Kemampuan berpikir tingkat tinggi siswa smp dalam pemecahan masalah matematika ditinjau dari gaya belajar. JPPM, 10(2), 40–49. Purwanto, J., & Winarti. (2016). Profil pembelajaran fisika dan kemampuan berpikir kritis siswa madrasah aliyah se-DIY. Jurnal Penelitian Pembelajaran Fisika, 7(1), 8–18. https://doi.org/10.26877/jp2f.v7i1.1148 Purzer, Ş., Goldstein, M. H., Adams, R. S., Xie, C., & Nourian, S. (2015). An exploratory study of informed engineering design behaviors associated with scientific explanations. International Journal of STEM Education, 2(9). https://doi.org/10.1186/s40594-015-0019-7 286 Puspendik. (2019). Laporan hasil ujian nasional 2019. Putra, A. A. (2016). Konsep pendidikan Agama Islam perspektif Imam Al-Ghazali. Jurnal Al-Thariqah, 1(1), 41–54. Rahman, F. (1967). The Qur’anic solution of Pakistan’s educational problems. Islamic Studies, 6(4), 315–326. Rahyubi, H. (2012). Teori-teori belajar dan aplikasi pembelajaran motoric: Deskripsi dan tinjauan kritis. Nusa Media. Ramayulis. (2012). Sejarah pendidikan Islam: Napaktilas perubahan konsep, filsafat, dan metodologi pendidikan Islam dari era Nabi Saw sampai ulama nusantara. Kalam Mulia. Ramelan, M., & Wijaya, A. (2019). A comparative analysis of Indonesian and Singaporean mathematics textbooks from the perspective of mathematical creativity: A case statistics and probability. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1320/1/012037 Ratnasari, N., Tadjudin, N., Syazali, M., Mujib, M., & Andriani, S. (2018). Project based learning (PjBL) model on the mathematical representation ability. Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah, 3(1), 47. https://doi.org/10.24042/tadris.v3i1.2535 Ravitch, D. (2000). Left back: A century of failed school reforms. Simon & Schuster. Remijan, K. W. (2017). Project-based learning and design-focused projects to motivate secondary mathematics students. Interdisciplinary Journal of Problem-Based Learning, 11(1), 1–14. Retnawati, H. (2015). Perbandingan akurasi penggunaan skala Likert dan pilihan ganda untuk mengukur self-regulated learning. Jurnal Kependidikan: Penelitian Inovasi Pembelajaran, 45(2), 156–167. Retnawati, H. (2016a). Analisis kuantitatif instrumen penelitian. Parama Publishing. Retnawati, H. (2016b). Proving content validity of self-regulated learning scale (The comparison of Aiken index and expanded Gregory index). Research and Evaluation in Education, 2(2), 155–164. https://doi.org/10.21831/reid.v2i2.11029 Retnawati, H., Hadi, S., & Nugraha, A. C. (2016). Vocational high school teachers’ difficulties in implementing the assessment in curriculum 2013 in Yogyakarta province of Indonesia. International Journal of Instruction, 9(1), 33–48. Rippin, A., Booth, C., Bowie, S., & Jordan, J. (2002). A complex case: Using the case study method to explore uncertainty and ambiguity in undergraduate business education. Teaching in Higher Education, 7(4), 429–441. Roberts, A., & Cantu, D. (2012). Applying STEM instructional strategies to design and technology curriculum. In T. Ginner, J. Hallström, & M. Hultén (Eds.), PATT 26 287 Conference: Technology Education in the 21st Century (pp. 111–118). Royal Institute of Technology Stockholm. Roehrig, G. H., Dare, E. A., Ring-whalen, E., & Wieselmann, J. R. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal of STEM Education, 8(2), 1–21. Ruggiero, V. R. (2015). Thinking critically about ethical issues (Ninth). https://doi.org/10.5840/teachphil199215470 Sahin, A. (2015). A practice-based model of STEM teaching: STEM students on the stage (SOS). Sense Publisers. Sahin, A. (2018). The role of interdisciplinary project-based learning in integrated STEM education. Journal of STEM Education: Innovation and Research, 19. Saihu. (2020). Konsep pembaharuan pendidikan Islam menurut Fazlur Rahman. Andragogi Jurnal Pendidikan Islam, 2(1), 83–99. https://doi.org/doi.org/10.36671/andragogi.v1i3.66 Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, December/J, 20–27. Sanders, S. (2016). Critical and creative thinkers in mathematics classrooms. Journal of Student Engagement: Education Matters, 6(1), 19–27. Sanjaya, W. (2006). Strategi pembelajaran berorientasi standar proses pendidikan. Prenada Media Group. Saputra, W. N. E., Alhadi, S., Supriyanto, A., Wiretna, C. D., & Baqiyatussolihat, B. (2018). Perbedaan self-regulated learning siswa sekolah menengah kejuruan berdasarkan jenis kelamin. Jurnal Kajian Bimbingan Dan Konseling, 3(3), 131– 138. https://doi.org/10.17977/um001v3i32018p131 Saridjo, M. (2011). Pendidikan Islam dari masa ke masa: Tinjauan kebijakan publik terhadap pendidikan Islam di Indonesia. al Mannar Press. Sasson, I., Yehuda, I., & Malkinson, N. (2018). Fostering the skills of critical thinking and question-posing in a project-based learning environment. Thinking Skills and Creativity, 29, 203–212. https://doi.org/10.1016/j.tsc.2018.08.001 Savira, F., & Suharsono, Y. (2013). Self-regulated learning (SRL) dengan prokrastnasi akademik pada siswa akselerasi. Jurnal Ilmiah Psikologi Terapan, 01(01), 66–75. https://doi.org/10.1017/CBO9781107415324.004 Scheitle, C. P., & Ecklund, E. H. (2017). Recommending a child enter a STEM career: The role of religion. Journal of Career Development, 44(3), 251–265. https://doi.org/10.1177/0894845316646879 Schleicher, A. (2019). PISA 2018: Insights and interpretations. Retrieved from https://www.oecd.org/pisa/PISA 2018 Insights and Interpretations FINAL 288 PDF.pdf Schunk, D. H. (2012). Learning theories an educational perspective. Pearson. Schunk, D. H., & Zimmerman, B. J. (2007). Influencing children’s self-Efficacy and self-regulation of reading and writing through modeling. Reading and Writing Quarterly, 23(1), 7–25. https://doi.org/10.1080/10573560600837578 Seameo. (2018). Strategi pelaksanaan STEM di sekolah integrasi STEM dalam pembelajaran matematika. Setiani, N., Santoso, B., & Kurjono, K. (2018). Self regulated learning and achievement motivation to student academic procrastination. Jurnal MANAJERIAL, 17(1), 17. https://doi.org/10.17509/manajerial.v17i1.9759 Shalihin, R. R., Bahriya, F., & Wantini. (2019). The implementation of qauniyah verses based on unification curriculum in SMA Trensains. Jurnal Manajemen Pendidikan Islam, 4(2), 70–77. https://doi.org/10.1007/978-1-4842-3933-9_4 Sharma, S. (1996). Applied multivariate techniques. John Wiley & Sons Inc. Shaughnessy, J. M. (2013). Mathematics in a STEM context. Mathematics Teaching in the Middle School, 18(6), 324. Shen, J., Sung, S., & Zhang, D. (2015). Toward an analytic framework of interdisciplinary reasoning and communication (IRC) processes in science. International Journal of Science Education, 37(17), 2809–2835. Shernoff, D. J., Sinha, S., Bressler, D. M., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1), 1–16. https://doi.org/10.1186/s40594-017-0068-1 Shihab, M. Q. (2003). Tafsir al-Mishbah pesan, kesan, dan keserasian al-Qur’an juz ’amma. Lentera Hati. Shpeizer, R. (2019). Towards a successful integration of project-based learning in higher education: Challenges, technologies and methods of implementation. Universal Journal of Educational Research, 7(8), 1765–1771. https://doi.org/10.13189/ujer.2019.070815 Singer, S. R., Nielsen, N. R., & Schweingruber, H. A. (2012). Discipline-based education research: understanding and improving learning in undergraduate science and engineering. The National Academies Press. Siswono, T. Y. E. (2016). Berpikir kritis dan berpikir kreatif sebagai fokus pembelajaran matematika. Seminar Nasional IKIP PGRI Semarang. IKIP PGRI Semarang. Slavin, R. . (1994). Educational psychology, theories, and practice. Allyn and Bacon Publishers. 289 Slough, S. W., & Milam, J. O. (2013). Theoretical framework for the design of STEM project-based learning. In R. M. Capraro, M. M. Capraro, & J. R. Morgan (Eds.), STEM Project-Based Learning: An Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach (pp. 15–28). Sense Publisers. Smit, L. S. (2016). A better understanding of 21st century skills in mathematics education and a view on these skills in current practice. Science, 1–27. Souvignier, E., & Moklesgerami, J. (2006). Using self-regulation as a framework for implementing strategy instruction to foster reading comprehension. Learning and Instruction, 16(1), 57–71. https://doi.org/10.1016/j.learninstruc.2005.12.006 Stehle, S. M., & Peters-burton, E. E. (2019). Developing student 21 st Century skills in selected exemplary inclusive STEM high schools. International Journal of STEM Education, 6(39), 1–15. https://doi.org/10.1186/s40594-019-0192-1 Stoeger, H., & Ziegler, A. (2008). Evaluation of a classroom based training to improve self-regulation in time management tasks during homework activities with fourth graders. Metacognition and Learning, 3(3), 207–230. https://doi.org/10.1007/s11409-008-9027-z Stohlmann, M., Moore, T. J., Roehrig, G. H., Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1). https://doi.org/10.5703/1288284314653 Stone-MacDonald, A., Wendell, K., Douglass, A., & Love, M. L. (2015). Engaging young engineers: Teaching problem-solving skills through STEM. Paul H. Brookes Publishing Co. Sugiyono. (2010). Metode penelitian pendidikan pendekatan kuantitatif, kualitatif, dan R&D. Alfabeta. Sugrah, N. (2019). Implementasi teori belajar konstruktivisme dalam pembelajaran sains. Humanika, Kajian Ilmiah Mata Kuliah Umum, 19(2), 121–138. Suhendri, H. (2010). Pengaruh kecerdasan matematis–logis dan kemandirian belajar terhadap hasil belajar matematika. Jurnal Formatif, 1(1), 29–39. Sumrall, W. J., & Schillinger, D. N. (2004). A student-directed model for designing a science/social studies curriculum. The Social Studies, 95(1), 5–10. Sundayana, R. (2016). Kaitan antara gaya belajar, kemandirian belajar, dan kemampuan pemecahan masalah siswa SMP dalam pelajaran matematika. Jurnal Musharofa, 75–84. Sungur, S., & Tekkaya, C. (2006). Effects of problem-based learning and traditional instruction on self-regulated learning. Journal of Educational Research, 99(5), 307–320. https://doi.org/10.3200/JOER.99.5.307-320 Suparno, P. (1997). Filsafat konstruktivis dalam pendidikan. Penerbit Kanisius. 290 Supriadi, D., Mardiana, & Subanti, S. (2015). Analisis proses berpikir siswa dalam memecahkan masalah matematika berdasarkan langkah polya ditinjau dari kecerdasan emosional siswa kelas VIII SMP Al Azhar Syifa Budi tahun pelajaran 2013/2014. Jurnal Elektronik Pembelajaran Matematika, 3(2), 204–214. Susilowati, Sajidan, & Ramli, M. (2017). Analisis keterampilan berpikir kritis siswa madrasah aliyah negeri di Kabupaten Magetan. Prosiding SNPS (Seminar Nasional Pendidikan Sains), 21(2000), 223–231. Sya’bani, M. A. Y. (2017). Pemikiran Syed Muhammad Naquib Al-Attas tentang pendidikan Islam. Tamaddun: Jurnal Pendidikan Dan Pemikiran Keagamaan. Syah, A. (2008). Term tarbiyah, ta’lim, dan ta’dib dalam pendidikan Islam tinjauan dari aspek semantik. Jurnal Al-Fikra: Jurnal Ilmiah Keislaman, 7(1). Tai, W. C., & Lin, S. W. (2015). Relationship between Problem-polving style and mathematical literacy. Educational Research and Reviews, 10(11), 1480–1486. Takaya, K. (2015). Bruner’s theory of cognitive development. International Encyclopedia of the Social & Behavioral Sciences: Second Edition, 2, 880–885. Tempelaar, D. T. (2006). The role of metacognition in business education. Industry and Higher Education, 20(5), 291–297. https://doi.org/10.5367/000000006778702292 Thomas, B., & Watters, J. J. (2015). Perspectives on Australian, Indian and Malaysian approaches to STEM education. International Journal of Educational Development, 45, 42–53. https://doi.org/10.1016/j.ijedudev.2015.08.002 Tillman, D. A., An, S. A., Cohen, J. D., Kjellstrom, W., & Boren, R. L. (2014). Exploring wind power: Improving mathematical thinking through digital fabrication. Journal of Educational Multimedia and Hypermedia, 23(4), 401–421. Timms, M., Moyle, K., Weldon, P., & Mitchell, P. (2018). Chalenges in STEM learning in Australian schools. Australian Council for Educational Research. Torlakson, T. (2014). Innovate: A blueprint for science, technology, engineering, and mathematics in California public education. State Superintendent of Public Instruction. Trauth-Nare, A., & Buck, G. (2011). Assessment for learning. The Science Teacher, (178), 34–39. Treffers, A. (2012). Three dimensions: A model of goal and theory description in mathematics instruction. Springer Science & Business Media. Tresnawati, Hidayat, W., & Rohaeti, E. E. (2017). Kemampuan berpikir kritis matematis dan kepercayaan diri siswa SMA. Symmetry: Pasundan Journal of Research in Mathematics Learning and Education, 2, 116–122. https://doi.org/10.23969/symmetry.v2i2.616 Trianto. (2010). Mendesain model pembelajaran inovatif-progresif. Kencana. 291 Trisdiono, H. (2014). Project based-learning in teachers’ perspectives. DIJE, 2(5). Tseng, K., Chang, C., Lou, S., & Chen, W. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal Technology Design Education, 23, 87– 102. https://doi.org/10.1007/s10798-011-9160-x Tytler, R., Williams, G., Hobbs, L., & Anderson, J. (2019). Challenges and opportunities for a STEM interdisciplinary agenda. In B. Doig, J. Williams, D. Swanson, R. B. Ferri, & P. Drake (Eds.), Interdisciplinary mathematics education: State of the art and beyond (pp. 51–84). Cham, Switzerland: Springer Open. UNDP. (2022). Human development report 2021/2022 (Uncertain times, unsettled lives: Shaping our future in a transforming world). Usher, E. L., & Schunk, D. H. (2011). Social cognitive theoretical perspective of relf- regulation. In D. H. Schunk & J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (pp. 19–35). Routledge. UU RI Nomor 20. 2003. Tentang Sistem Pendidikan Nasional. , (2003). Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Harvard University Press. Wan Nor Fadzilah, W. H., Nurazidawati, M. A., Oziah, O., Lilia, H., Mohamad Sattar, R., Kamisah, O., & Zanaton, I. (2016). Fostering students’ 21st century skills through project oriented problem based learning (POPBL) in integrated STEM education program. Asia-Pacific Forum on Science Learning and Teaching, 17(1), 1–19. Wang, H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research (J-PEER), 1(2), 1–13. https://doi.org/10.5703/1288284314636 Webb, M. E., Little, D. R., Cropper, S. J., & Roze, K. (2017). The contributions of convergent thinking, divergent thinking, and schizotypy to solving insight and non-insight problems. Thinking and Reasoning, 23(3), 235–258. https://doi.org/10.1080/13546783.2017.1295105 Wena, M. (2011). Strategi pembelajaran inovatif kontemporer. Bumi Aksara. White, D. W. (2014). What is STEM education and why is it important? Florida Association of Teacher Educators Journal, 1(14), 1–15. Retrieved from https://www.ccc.edu/departments/Documents/STEM_labor.pdf Widyasari, S. F., Masykur, R., & Sugiharta, I. (2021). Flipped classroom: peningkatan kemampuan berpikir kritis matematis dan motivasi belajar peserta didik madrasah tsanawiyah. Journal of Mathematics Education and Science, 4(1), 15–22. https://doi.org/10.32665/james.v4i1.171 Wiggins, G. P., & McTighe, J. (2005). Understanding by design. Association for 292 Supervision and Curriculum Development. Wijayanto, S. H. (2008). Structural equation modeling dengan Lisrel 8.80: Konsep dan tutorial. Graha Ilmu. Winarso, W., & Dewi, W. Y. (2017). Berpikir kritis siswa ditinjau dari gaya kognitif visualizer dan verbalizer dalam menyelesaikan masalah geometri. Beta: Jurnal Tadris Matematika, 10(2), 117–133. https://doi.org/10.20414/betajtm.v10i2.109 Winastwan, Gora, & Sunarto. (2010). Pakematik strategi pembelajaran inovatif berbasis TIK. Flex Media Komputindo. Winne, P. H., & Hadwin, A. F. (2012). The weave of motivation and self-regulated learning. In D. H. Schunk & B. J. Zimmerman (Eds.), Motivation and self- regulated learning: Theory, research, and applications (pp. 297–314). Lawrence Erlbaum Associates Publishers. World Economic Forum. (2020). The future of jobs report 2020. In The Future of Jobs Report. Wraga, W. G. (1993). The interdisciplinary imperative for citizenship education. Theory and Research in Social Education, 21(3), 201–231. Wright, R. J. (2008). Educational assessment: Tests and measurement in the age of accountability. SAGE. Xie, Y., Fang, M., & Shauman, K. (2015). STEM education. Annual Review of Sociology, 41(April), 331–357. https://doi.org/10.1146/annurev-soc-071312- 145659 Yasin, M., Jauhariyah, D., Madiyo, M., Rahmawati, R., Farid, F., Irwandani, I., & Mardana, F. F. (2019). The guided inquiry to improve students mathematical critical thinking skills using student’s worksheet. Journal for the Education of Gifted Young Scientists, 7(4), 1345–1360. https://doi.org/10.17478/jegys.598422 Yata, C., Ohtani, T., & Isobe, M. (2020). Conceptual framework of STEM based on Japanese subject principles. International Journal of STEM Education, 7(12). York, S., Lavi, R., Dori, Y. J., & Orgill, M. K. (2019). Applications of systems thinking in STEM education [Research-article]. Journal of Chemical Education, 96(12), 2742–2751. https://doi.org/10.1021/acs.jchemed.9b00261 Yu, K. C., Wu, P. H., & Fan, S. C. (2020). Structural relationships among high school students’ scientific knowledge, critical thinking, engineering design process, and design product. International Journal of Science and Mathematics Education, 18(6), 1001–1022. https://doi.org/10.1007/s10763-019-10007-2 Zamroni, & Mahfudz. (2009). Panduan teknis pembelajaran yang mengembangkan critical thinking. Depdiknas. Zaslavsky, C. (1994). “Africa counts” and ethnomathematics. For the Learning of 293 Mathematics, 14(2), 3–8. Zhou, M., & Brown, D. (2017). Educational learning theories. In Education Open Textbooks (2nd ed.). Retrieved from https://oer.galileo.usg.edu/education- textbooks/1 Zhou, Y., Fan, X., Wei, X., & Tai, R. H. (2017). Gender gap among high achievers in math and implications for STEM pipeline. Asia-Pacific Education Researcher, 26(5), 259–269. https://doi.org/10.1007/s40299-017-0346-1 Zimmerman, B. J. (1989a). A social cognitive view of self-regulated lcademic Learning. Journal of Educational Psychology, 81(3), 329–339. https://doi.org/10.1037/0022-0663.81.3.329 Zimmerman, B. J. (1989b). Models of self-regulated learning and academic achievement. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-Regulated Learning and Academic Achievement: Theory, Research, and Practice (pp. 1–25). https://doi.org/10.1007/978-1-4612-3618-4_1 Zimmerman, B. J. (1990). Goal setting and self-Efficacy during self-regulated learning. Educational Psychologist, 25(1), 3–17. https://doi.org/10.1207/s15326985ep2501 Zimmerman, B. J. (2000). Attaining self-regulation A social cognitive perspective. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-Regulation: Theory, Research, and Applications (pp. 13–39). Academic Press. Zimmerman, D. C. (2010). Project based learning for life skill building in 12th grade social studies classrooms: A case study. Dominican University of California. Zumbrunn, S., Tadlock, J., & Roberts, W. D. (2011). Encourage self-regulated learning in the classroom: A literature review. Metropolitan Educational Research Consortium (MERC) Publications. citation: Numan, Mulin and Retnawati, Heri (2023) Model Pembelajaran Matematika Berbasis Proyek dalam Kerangka Integrasi STEM dan Islam untuk Pengembangan Kemampuan Berpikir Kritis dan Kemandirian Belajar. S3 thesis, Program Pascasarjana. document_url: http://eprints.uny.ac.id/77248/1/disertasi-mulin%20numan-19703261018.pdf