eprintid: 74632
rev_number: 10
eprint_status: archive
userid: 1290
dir: disk0/00/07/46/32
datestamp: 2022-10-13 04:26:11
lastmod: 2022-10-13 04:26:11
status_changed: 2022-10-13 04:26:11
type: thesis
metadata_visibility: show
creators_name: Pamungkas, Tubagus
creators_name: Budiningsih, Asri
title: Analisis Faktor Determinasi Kemampuan Pemecahan Masalah Matematis Siswa SMK Di Wilayah Hinterland Batam.
ispublished: pub
subjects: D3
subjects: F4
subjects: pasca_sarjana
divisions: pps_ip
full_text_status: restricted
keywords: faktor determinasi, kemampuan pemecahan masalah matematis, wilayah hinterland Batam.
abstract: Angka Partisipasi Sekolah (APS) serta Angka Partisipasi Murni (APM) pada tahun 2017 usia 16 – 18 tahun di Kota Batam tergolong rendah. Selain itu juga terjadi penurunun nilai UN khususnya mata pelajaran matematika, pada tahun 2014 – 2019. Penurunan nilai UN tersebut apabila ditinjau dari kisi-kisi Ujian Nasional berdasar BSNP tahun 2020 merupakan bagian dari indikator kemampuan pemecahan masalah matematis. Tujuan dari penelitian ini adalah untuk mendeskripsikan faktor-faktor yang dominan mempengaruhi kemampuan pemecahan masalah matematis siswa hinterland Batam. Analisa terhadap kemampuan pemecahan masalah matematis adalah hal penting karena dapat memberikan informasi untuk dapat menciptakan strategi belajar yang berpijak pada karakteristik siswa, apabila hal ini tidak dilakukan dapat menimbulkan kurang optimalnya potensi kemampuan pemecahan masalah siswa.
Penelitian ini adalah survei kuantitatif yang melibatkan sembilan orang validator, empat orang guru matematika SMK, dan 126 siswa SMKN 1 Batam. Semua instrumen telah divalidasi dengan melihat CVR dan CVI dan telah dilihat reliabilitasnya. Semua instrumen dinyatakan reliabel dengan kategori tinggi dan sangat tinggi. Instrumen untuk variabel motivasi belajar matematika, kecemasan belajar matematika, sikap terhadap matematika, metakognisi, memori kerja, kemandirian belajar matematika, scaffolding menggunakan skala likert dan dibagikan secara online untuk meminimalkan penularan Covid-19. Sebaliknya, instrumen kemampuan numerik dan penalaran matematika berbentuk soal pilihan ganda yang diberikan secara online, sedangkan instrumen pemahaman konsep matematika dan kemampuan pemecahan masalah matematis berbentuk soal essay yang dikerjakan secara offline dengan memperhatikan protokol kesehatan. Analisis menggunakan analisa regresi metode backward.
Hasil penelitian ini menyimpulkan bahwa motivasi belajar matematika, kecemasan belajar matematika, metakognisi, memori kerja matematika, dan kemandirian belajar matematika siswa di wilayah hinterland Batam berada pada kategori sedang. Menggunakan α = 5% disimpulkan bahwa variabel-variabel tersebut tidak berpengaruh secara signifikan terhadap kemampuan pemecahan masalah matematis. Sikap siswa terhadap matematika dan scaffolding berada pada kategori sedang dan memberikan pengaruh yang signifikan terhadap kemampuan pemecahan masalah matematis. Sebanyak 69,84% dari siswa hinterland mempunyai kemampuan numerik pada kategori tinggi dan secara umum memberikan pengaruh yang signifikan terhadap kemampuan pemecahan masalah matematis. Terdapat berturut-turut sebanyak 16,67% dan 5,56% dari siswa hinterland yang memiliki penalaran dan pemahaman konsep matematika pada kategori tinggi dan sangat tinggi. Secara umum tingkat penalaran siswa berada pada kategori rendah, sedangkan tingkat pemahaman konsep matematika siswa berada pada kategori sedang. Kedua variabel tersebut memberikan pengaruh yang signifikan terhadap kemampuan pemecahan masalah matematis. Studi ini juga menunjukkan bahwa sebanyak 25,40% dari siswa hinterland mempunyai kemampuan pemecahan masalah matematis tinggi dan sangat tinggi. Secara bersama-sama, sikap terhadap matematika, scaffolding, kemampuan numerik, penalaran matematika, pemahaman konsep matematika merupakan variabel yang memberikan kontribusi terhadap kemampuan pemecahan masalah matematis sebesar 53,49%.
date: 2022-08-18
date_type: published
institution: Program Pascasarjana
department: Ilmu Pendidikan
thesis_type: disertasi
referencetext: Abed, E.R., Al-Absi, M.M. & Shindi, Y.A.A. (2016). Developing a numerical ability test for student of education in Jordan : an application of item response theory. Canadian centre of science and education. Vol.9 No.1. http://doi:10.5539/ies.v9n1p161
Aberdein, A. (2013). The parallel structure of mathematical reasoning. In The argument of mathematics (pp. 361-380). Springer, Dordrecht.
Adegoke, B. A. (2013). Modelling the relationship between mathematical reasoning ability and mathematics attainment.Journal of Education and Practice, 4(17), 54-61.
Adesemowo, A. K. (2017). Multilingualism as a learning scaffolding element: Reflection on first-year Information Communication Technology networking students. South African Journal of African Languages, 37(1), 11-16.
Ahmadi, A & Supriyono, W. (2008). Psikologi Belajar. Jakarta: Rineka Cipta. Akinmola, E.A. (2014). Developing mathematical problem solving ability : a panacea for a suistainable development in the 21 st century. International
Journal of Education and Research. Vol 2.
Akinsola, M. K., & Olowojaiye, F. B. (2008). Teacher instructional methods and
student attitudes towards mathematics. International electronic journal of
mathematics education, 3(1), 60-73.
Alsina, A., Maurandi, A., Ferre, E., & Coronata, C. (2021). Validating an
Instrument to Evaluate the Teaching of Mathematics Through Processes. International Journal of Science and Mathematics Education, 19(3), 559-577.
Alwisol. (2009). Psikologi Kepribadian. Edisi Revisi. Malang: UMM Press
Ames, C., & Ames, R. (1984). Systems of student and teacher motivation: Toward
a qualitative definition. Journal of educational psychology, 76(4), 535. Amiripour, P., Amir-Mofidi, S., & Shahvarani, A. (2012). Scaffolding as effective
258
 method for mathematical learning.Indian Journal of Science and
Technology, 5(9), 3328-3331.
Anas Sudijono.(2005). Pengantar Statistik Pendidikan. Jakarta: Raja Grafindo
Persada.
Anderson, D. R., Burnham, K. P., & White, G. C. (1998). Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies. Journal of Applied Statistics, 25(2), 263-282. https://doi.org/10.1080/02664769823250
Andersson, U. (2007). The contribution of working memory to children's mathematical word problem solving. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition, 21(9), 1201-1216. https://doi.org/10.1002/acp.1317
Anuar, A., & Sadek, D. M. (2018). Validity Test of Lean Healthcare using Lawshe’s Method. Int. J Sup. Chain. Mgt Vol, 7(6), 197.
Arikunto, S. (2009). Dasar-Dasar Evaluasi Pembelajaran. Jakarta: Bumi Aksara. Arikunto, S. (2010). Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta:
Rineka Cipta.
Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike's Information Criterion. The Journal of Wildlife Management, 74(6), 1175-1178. https://doi.org/10.1111/j.1937- 2817.2010.tb01236.x
Artz, A. F., & Armour-Thomas, E. (1992). Development of a cognitive- metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and instruction, 9(2), 137-175. https://doi.org/10.1207/s1532690xci0902_3
Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic bulletin & review, 14(2), 243-248.
Asikhia, O. A. (2021). Gender Effect on Mathematics Anxiety of Secondary School Students in Ogun West Senatorial District, Nigeria. Asian Journal of Education and Social Studies, 17-23. DOI: 10.9734/ajess/2021/v15i430386
                      259

 Ates, S., & Cataloglu, E. (2007). The effects of students' reasoning abilities on conceptual understandings and problem-solving skills in introductory mechanics. European Journal of Physics, 28(6), 1161.
Aunio, P., & Räsänen, P. (2016). Core numerical skills for learning mathematics in children aged five to eight years–a working model for educators. European Early Childhood Education Research Journal, 24(5), 684-704
Azwar, S. (2014). Penyusunan Skala Psikologi Edisi II. Yogyakarta: Pustaka Pelajar.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559. DOI: 10.1126/science.1736359
Baddeley, A. (1996). The fractionation of working memory. Proceedings of the National Academy of Sciences, 93(24), 13468- 13472. https://doi.org/10.1073/pnas.93.24.13468
Baddeley, A. (2003). Working memory and language: An overview. Journal of communication disorders, 36(3), 189-208.https://doi.org/10.1016/S0021- 9924(03)00019-4
Badru, K. Ademola. (2016). Problem based instructional and numerical ability as determinant of senior secondary achievement in mathematics. Journal of education and practice. Vol.7.
Bae, Y. S., Chiang, H. M., & Hickson, L. (2015). Mathematical word problem solving ability of children with autism spectrum disorder and their typically developing peers. Journal of autism and developmental disorders, 45(7), 2200-2208.
Baghestani, A. R., Ahmadi, F., Tanha, A., & Meshkat, M. (2019). Bayesian Critical Values for Lawshe's Content Validity Ratio. Measurement and Evaluation in Counseling and Development, 52(1), 69-73. https://doi.org/10.1080/07481756.2017.1308227
Bandura, A., & Adams, N. E. (1977). Analysis of self-efficacy theory of behavioral change. Cognitive therapy and research, 1(4), 287-310.
Bandura, A., Adams, N. E., Hardy, A. B., & Howells, G. N. (1980). Tests of the generality of self-efficacy theory. Cognitive therapy and research, 4(1), 39-
                         260

 66.
Bannert, M., & Mengelkamp, C. (2013). Scaffolding hypermedia learning through
metacognitive prompts. In International handbook of metacognition and
learning technologies (pp. 171-186). Springer, New York, NY.
Baradwaj, B. K., & Pal, S. (2012). Mining educational data to analyze students'
performance. arXiv preprint arXiv:1201.3417.
Bar-Gera, H. (2017). The target parameter of adjusted R-squared in fixed-design
experiments. The American Statistician, 71(2), 112-119.
https://doi.org/10.1080/00031305.2016.1200489
Benbow, C. P. (1988). Sex differences in mathematical reasoning ability in intellectually talented preadolescents: Their nature, effects, and possible causes. Behavioral and Brain Sciences, 11(2), 169-183. https://doi.org/10.1017/S0140525X00049244
Benbow, C. P., & Benbow, R. M. (1984). Biological correlates of high mathematical reasoning ability. In Progress in brain research (Vol. 61, pp. 469-490). Elsevier. https://doi.org/10.1016/S0079-6123(08)64455-6
Bertram, D. (2007). Likert scales. Retrieved November, 2, 2013.
Bialystok, E., & Majumder, S. (1998). The relationship between bilingualism and the development of cognitive processes in problem solving. Applied Psycholinguistics, 19(1), 69-85.
https://doi.org/10.1016/j.lindif.2010.09.013
Boekaerts, M. (1999). Self-regulated learning: Where we are today. International journal of educational research, 31(6), 445-457. https://doi.org/10.1016/S0883-0355(99)00014-2
Bomia, L., Beluzo, L., Demeester, D., Elander, K., Johnson, M., & Sheldon, B. (1997). The Impact of Teaching Strategies on Intrinsic Motivation. Champaign, IL: ERIC Clearinghouse on Elementary and Early Childhood Education. (ERIC Document Reproduction Service No. ED 418 925)
Bourke, L., & Adams, A. M. (2011). Is it differences in language skills and working memory that account for girls being better at writing than boys?. Journal of Writing Research, 3(3).
                       261

 Bransford, J., Sherwood, R., Vye, N., & Rieser, J. (1986). Teaching thinking and problem solving: Research foundations. American Psychologist, 41(10), 1078–1089. https://doi.org/10.1037/0003-066X.41.10.1078
Brown, A. (1981). Metacognition: The development of selective attention strategies for learning from texts. (Reprinted from Directions in reading: Research and instruction, pp. 21-43, by M.L. Kamil, Ed., 1981, Washington D.C.)
Budiningsih, A. (2005). Belajar dan pembelajaran. Jakarta : Rineka Cipta. Budiningsih, A. (2008). Pembelajaran moral. Jakarta : Rineka Cipta.
Budiyono. (2011). Penilaian hasil belajar. Surakarta : Program Pascasarjana
Universitas Sebelas Maret.
Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental neuropsychology, 19(3), 273- 293.https://doi.org/10.1207/S15326942DN1903_3
Bundy, A. (1983). The computer modelling of mathematical reasoning (Vol. 10). London: Academic Press.
Caplan, D., & Waters, G. S. (1999). Verbal working memory and sentence comprehension. Behavioral and brain Sciences, 22(1), 77-94. https://doi.org/10.1017/S0140525X99001788
Chang, K. E., Sung, Y. T., & Lin, S. F. (2006). Computer-assisted learning for mathematical problem solving. Computers & Education, 46(2), 140-151. https://doi.org/10.1016/j.compedu.2004.08.002
Chang, K. E., Wu, L. J., Weng, S. E., & Sung, Y. T. (2012). Embedding game- based problem-solving phase into problem-posing system for mathematics learning. Computers & Education, 58(2), 775-786. https://doi.org/10.1016/j.compedu.2011.10.002
Chapman, O. (2005). Constructing Pedagogical Knowledge of Problem Solving: Preservice Mathematics Teachers. International Group for the Psychology of Mathematics Education, 2, 225-232.
Chapman, O. (2007). PRESERVICE SECONDARY MATHEMATICS TEACHERS’ KNOWLEDGE AND INQUIRY TEACHING
                   262

APPROACHES. University of Calgary. Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education, Vol. 2, pp. 97-104. Seoul: PME
Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In Psychology of learning and motivation (V ol. 16, pp. 1-58). Academic Press. https://doi.org/10.1016/S0079-7421(08)60546-0
Chen, L., Van Dooren, W., Chen, Q., & Verschaffel, L. (2011). AN INVESTIGATION ON CHINESE TEACHERS’REALISTIC PROBLEM POSING AND PROBLEM SOLVING ABILITY AND BELIEFS. International Journal of Science and Mathematics Education, 9(4), 919-948.
Chen, M. H., Gualberto, P. J., Tameta, C. L., & Salle, D. L. (2009). The development of metacognitive reading awareness inventory. TESOL journal, 1(1), 43-57.
Chi, M. T., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts.Learning and instruction, 4(1), 27-43. https://doi.org/10.1016/0959-4752(94)90017-5
Chirinda, B. (2021). Professional development for teachers’ mathematical problem- solving pedagogy–what counts?. Pythagoras, 42(1), 12.
Chishti, M. H., & Rana, A. M. K. (2021). Test Anxiety Effects on Student's Performance: A Psychological Analysis at Secondary School Level in Punjab, Pakistan. Journal of Behavioural Sciences, 31(1).
Cliff, N. (1983). Some cautions concerning the application of causal modeling methods. Multivariate behavioral research, 18(1), 115- 126. https://doi.org/10.1207/s15327906mbr1801_7
Coben, D., & Weeks, K. (2014). Meeting the mathematical demands of the safety- critical workplace: medication dosage calculation problem-solving for nursing. Educational Studies in Mathematics, 86(2), 253-270.
Cornoldi, D. L. C. (1997). Mathematics and metacognition: What is the nature of the relationship?. Mathematical cognition, 3(2), 121- 139. https://doi.org/10.1080/135467997387443
                           263

 Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98– 104. https://doi.org/10.1037/0021-9010.78.1.98
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory?. Progress in brain research, 169, 323-338. https://doi.org/10.1016/S0079-6123(07)00020-9
Cowan, N. (2016).Working Memory Capacity: Classic Edition. Routledge. https://doi.org/10.4324/9781315625560
Cowan, N. (2019). Short-term memory based on activated long-term memory: A review in response to Norris (2017).
Crippen, K. J., & Earl, B. L. (2007). The impact of web-based worked examples and self-explanation on performance, problem solving, and self- efficacy. Computers & Education, 49(3), 809-821. https://doi.org/10.1016/j.compedu.2005.11.018
Crocker, L. M., Miller, M. D., & Franks, E. A. (1989). Quantitative methods for assessing the fit between test and curriculum. Applied Measurement in Education, 2(2), 179-194. https://doi.org/10.1207/s15324818ame0202_6
Dabbagh, N., & Kitsantas, A. (2012). Personal Learning Environments, social media, and self-regulated learning: A natural formula for connecting formal and informal learning.The Internet and higher education,15(1), 3-8. https://doi.org/10.1016/j.iheduc.2011.06.002
Dawe, L. (1983). Bilingualism and mathematical reasoning in English as a second language. Educational Studies in Mathematics, 14(4), 325-353.
De Grave, W. S., Dolmans, D. H., & Van Der Vleuten, C. P. (1999). Profiles of effective tutors in problem‐based learning: scaffolding student learning. Medical education, 33(12), 901-906. https://doi.org/10.1046/j.1365-2923.1999.00492.x
De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. Journal of experimental child psychology, 103(2), 186-201.
                          264

https://doi.org/10.1016/j.jecp.2009.01.004
del Mas, R. C. (2004). A comparison of mathematical and statistical reasoning. InThe challenge of developing statistical literacy, reasoning and thinking (pp. 79-95). Springer, Dordrecht.
DeLong, S. (2009). Teaching Methods to Encourage Independent Learning and Thinking. Center for Teaching Excellence, United States Military Academy: West Point, NY, USA.
Desoete, A., Roeyers, H., & De Clercq, A. (2003). Can offline metacognition enhance mathematical problem solving? Journal of Educational Psychology, 95(1), 188–200. https://doi.org/10.1037/0022-0663.95.1.188
Dew, K. H., Galassi, J. P., & Galassi, M. D. (1984). Math anxiety: Relation with situational test anxiety, performance, physiological arousal, and math avoidance behavior.Journal of Counseling Psychology, 31(4), 580– 583. https://doi.org/10.1037/0022-0167.31.4.580
Di Martino, P., & Zan, R. (2011). Attitude towards mathematics: A bridge between beliefs and emotions. Zdm, 43(4), 471-482.
Ditlevsen, O. (1979). Generalized second moment reliability index. Journal of Structural Mechanics, 7(4), 435- 451. https://doi.org/10.1080/03601217908905328
Doli, W., & Armiati, A. (2020, May). Development of mathematics learning tools based on realistic mathematics education for vocational high school students. In Journal of Physics: Conference Series (Vol. 1554, No. 1, p. 012021). IOP Publishing.
Driyarkara, N. (1980). Driyarkara tentang pendidikan (Vol. 1). Yayasan Kanisius. Eastman, C. M. (2021). Problem Solving Strategies in Design 1 (pp. 138-153).
Routledge.
Edwards, A. L. (1952). The scaling of stimuli by the method of successive intervals. Journal of Applied Psychology, 36(2), 118– 122. https://doi.org/10.1037/h0058208
Edwards, A. L., & Thurstone, L. L. (1952). An internal consistency check for scale values determined by the method of successive
                              265

 intervals. Psychometrika, 17(2), 169-180.
Elliott, B., Oty, K., McArthur, J., & Clark, B. (2001). The effect of an
interdisciplinary algebra/science course on students' problem solving skills, critical thinking skills and attitudes towards mathematics. International Journal of mathematical education in science and technology, 32(6), 811- 816. https://doi.org/10.1080/00207390110053784
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245. https://doi.org/10.1037/0033-295X.102.2.211
Eshun, B. (2004). Sex-differences in attitude of students towards mathematics in secondary schools. Mathematics Connection, 4(1), 1-13.
Fabry, R. E., & Pantsar, M. (2021). A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving. Synthese, 198(4), 3221-3263.
Fahyuni, E. F., & Istikomah, I. (2016). Psikologi Belajar & Mengajar (kunci sukses guru dalam interaksi edukatif).
Fatimah, A. T., & Prabawanto, S. (2020). Mathematical understanding and reasoning of vocational school students in agriculture-based mathematical tasks. Journal for the Education of Gifted Young Scientists, 8(2), 771-782.
Fatoke, A. O., Ogunlade, T. O., & Ibidiran, V. O. (2013). The effects of problem- solving instructional strategy and numerical ability on students’ learning outcomes.The International Journal of Engineering and Science (IJES), 2(10), 97-102.
Fawcett, L. M., & Garton, A. F. (2005). The effect of peer collaboration on children's problem‐solving ability. British Journal of Educational Psychology, 75(2), 157-169. https://doi.org/10.1348/000709904X23411
Feir-Walsh, B. J., & Toothaker, L. E. (1974). An empirical comparison of the ANOVA F-test, normal scores test and Kruskal-Wallis test under violation of assumptions. Educational and Psychological Measurement, 34(4), 789- 799. https://doi.org/10.1177/001316447403400406
Ford, M. I. (1994). Teachers' beliefs about mathematical problem solving in the elementary school. School Science and Mathematics, 94(6), 314-322.
                              266

https://doi.org/10.1111/j.1949-8594.1994.tb15683.x
Friso-Van den Bos, I., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational research review, 10, 29-44. https://doi.org/10.1016/j.edurev.2013.05.003
Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., Seethaler, P. M., Bryant, J. D., & Schatschneider, C. (2010). Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities? Developmental Psychology, 46(6), 1731– 1746. https://doi.org/10.1037/a0020662
Fuchs, L., Fuchs, D., Seethaler, P. M., & Barnes, M. A. (2020). Addressing the role of working memory in mathematical word-problem solving when designing intervention for struggling learners. ZDM, 52(1), 87-96.
Fujikoshi, Y., & Satoh, K. (1997). Modified AIC and Cp in multivariate linear regression. Biometrika, 84(3), 707- 716.https://doi.org/10.1093/biomet/84.3.707
Funkhouser, C. (1993). The influence of problem-solving software on student attitudes about mathematics.Journal of Research on Computing in Education, 25(3), 339-346. https://doi.org/10.1080/08886504.1993.10782055
Funkhouser, C., & Richard Dennis, J. (1992). The effects of problem-solving software on problem-solving ability. Journal of Research on Computing in Education, 24(3), 338-347. https://doi.org/10.1080/08886504.1992.10782015
Gagatsis*, A., & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational psychology, 24(5), 645-657. https://doi.org/10.1080/0144341042000262953
Gallagher, A. M., De Lisi, R., Holst, P. C., McGillicuddy-De Lisi, A. V., Morely, M., & Cahalan, C. (2000). Gender differences in advanced mathematical problem solving. Journal of experimental child psychology, 75(3), 165-190.
                          267

https://doi.org/10.1006/jecp.1999.2532
Gallego-Durán, F. J., Villagrá Arnedo, C. J., Molina-Carmona, R., & Llorens- Largo, F. (2020, October). Smartly Learning through step decomposition, automation and Gamification. InEighth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 256-262).
Gashaj, V., Oberer, N., Mast, F. W., & Roebers, C. M. (2019). Individual differences in basic numerical skills: The role of executive functions and motor skills.Journal of experimental child psychology,182, 187-195. https://doi.org/10.1016/j.jecp.2019.01.021
Geary, D. C. (2008). An evolutionarily informed education science. Educational psychologist, 43(4), 179-195.
Geary, D. C., Fan, L., & Bow-Thomas, C. C. (1992). Numerical cognition: Loci of ability differences comparing children from China and the United States. Psychological Science, 3(3), 180-185. https://doi.org/10.1111/j.1467-9280.1992.tb00023.x
Gierl, M. J., & Bisanz, J. (1995). Anxieties and attitudes related to mathematics in grades 3 and 6. The Journal of experimental education, 63(2), 139-158. https://doi.org/10.1080/00220973.1995.9943818
Glahn, C., & Gruber, M. R. (2020). Designing for context-aware and contextualized learning. In Emerging technologies and pedagogies in the curriculum (pp. 21-40). Springer, Singapore.
Godino, J. D. (1996). Mathematical concepts, their meanings and understanding. In PME conference (Vol. 2, pp. 2-417). THE PROGRAM COMMITTEE OF THE 18TH PME CONFERENCE.
Goldin, G. A., & McClintock, C. E. (1979). Task Variables in Mathematical Problem Solving.
Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., dan Tatham, R. L. (2006). MultivariatData Analysis Sixth Edition. New Jersey : Peasrson Prentice Hall Hannula, M. S. (2002). Attitude towards mathematics: Emotions, expectations and
values. Educational studies in Mathematics, 49(1), 25-46.
Harden, R. M. (2009). Independent learning. A practical guide for medical teacher.
                          268

 3rd ed. London, UK: Elsevier Churchill Livingstone, 168-74.
Heathers, G. (1971). A Definition of Individualized Education.
Heinzl, H., & Mittlböck, M. (2002). Adjusted R 2 Measures for the Inverse
Gaussian Regression Model. Computational Statistics, 17(4), 525-544. Hewner, M., & Knobelsdorf, M. (2008, November). Understanding computing stereotypes with self-categorization theory. In Proceedings of the 8th international Conference on Computing Education Research (pp. 72-75).
ACM.
Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students' prior
knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743. https://doi.org/10.1002/tea.3660200804
Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. Conceptual and procedural knowledge: The case of mathematics, 2, 1-27.\
Higgins, K. M. (1997). The effect of year-long instruction in mathematical problem solving on middle-school students' attitudes, beliefs, and abilities. The Journal of Experimental Education, 66(1), 5- 28. https://doi.org/10.1080/00220979709601392
Hino, K. (2007). Toward the problem-centered classroom: trends in mathematical problem solving in Japan. Zdm, 39(5-6), 503-514.
Hoffman, B. (2010). “I think I can, but I'm afraid to try”: The role of self-efficacy beliefs and mathematics anxiety in mathematics problem-solving efficiency. Learning and individual differences, 20(3), 276-283. https://doi.org/10.1016/j.lindif.2010.02.001
Hoffman, B., & Spatariu, A. (2008). The influence of self-efficacy and metacognitive prompting on math problem-solving efficiency. Contemporary educational psychology, 33(4), 875-893. https://doi.org/10.1016/j.cedpsych.2007.07.002
Iiskala, T., Vauras, M., Lehtinen, E., & Salonen, P. (2011). Socially shared metacognition of dyads of pupils in collaborative mathematical problem-
                           269

 solving processes. Learning and instruction, 21(3), 379-393.
https://doi.org/10.1016/j.learninstruc.2010.05.002
Isidro, S. N., & Calle, H. R. (2014). Improving mathematical competencies of students accessing to Higher Education from Vocational Training Modules. Journal of Cases on Information Technology (JCIT), 16(3), 51- 64.
Jarrold, C., & Towse, J. N. (2006). Individual differences in working memory. Neuroscience, 139(1), 39-50. https://doi.org/10.1016/j.neuroscience.2005.07.002
Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1-16.
Jensen, L. R. (1973). The relationships among mathematical creativity, numerical aptitude and mathematical achievement.
Jensen, L. R. (1973). The relationships among mathematical creativity, numerical aptitude and mathematical achievement.
Joshua, C. E., Eyitayo, B. A., Hammed, A. A., & Samaila, D. (2020). A Review of Instructional Models for Effective Teacher Education and Technology Integration. Sumerianz Journal of Education. Linguistics and Literature, 3(6), 86-95.
Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional science, 38(6), 523-550.
Karch, J. (2020). Improving on Adjusted R-squared. Collabra: Psychology, 6(1). https://doi.org/10.1525/collabra.343
Kaur, B., & Har, Y. B. (2009). Mathematical problem solving in Singapore schools. InMathematical Problem Solving: Yearbook 2009, Association of Mathematics Educators (pp. 3-13). https://doi.org/10.1142/9789814277228_0001
Kazemi, F., Yektayar, M., & Abad, A. M. B. (2012). Investigation the impact of chess play on developing meta-cognitive ability and math problem-solving power of students at different levels of education. Procedia-Social and Behavioral Sciences, 32, 372-379.
                           270

https://doi.org/10.1016/j.sbspro.2012.01.056
Kesten, C. (1987). Independent Learning: A Common Essential Learning: A Study Completed for the Saskatchewan Department of Education Core Curriculum Investigation Project.
Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in technology- enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56(2), 403-417. https://doi.org/10.1016/j.compedu.2010.08.024
Knowles, M. S. (1975). Self-directed learning: A guide for learners and teachers.
Kobayashi, M., & Sakata, S. (1990). Mallows' Cp criterion and unbiasedness of model selection. Journal of Econometrics, 45(3), 385- 395.https://doi.org/10.1016/0304-4076(90)90006-F
Kramarski, B., Mevarech, Z. R., & Arami, M. (2002). The effects of metacognitive instruction on solving mathematical authentic tasks. Educational studies in mathematics, 49(2), 225-250.
Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?!. Intelligence, 14(4), 389-433. https://doi.org/10.1016/S0160-2896(05)80012-1
Kyttälä, M., Aunio, P., Lepola, J., & Hautamäki, J. (2014). The role of the working memory and language skills in the prediction of word problem solving in 4- to 7-year-old children. Educational Psychology, 34(6), 674- 696. https://doi.org/10.1080/01443410.2013.814192
Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of experimental child psychology, 103(4), 546-565. https://doi.org/10.1016/j.jecp.2008.12.006
Larsson, O. S. K. A. R. (2015). Reliability analysis. Lecture notes, Lund University. Lee, J., & Park, S. (2005). Working Memory Impairments in Schizophrenia: A Meta-Analysis. Journal of Abnormal Psychology, 114(4), 599–
611. https://doi.org/10.1037/0021-843X.114.4.599
Legg, A. M., & Locker Jr, L. (2009). Math performance and its relationship to math
anxiety and metacognition. North American Journal of Psychology, 11(3). 271
                            
Li, X. (2012). A simulation evaluation of backward elimination and stepwise variable selection in regression analysis.
Liao, S. H. (2002). Problem solving and knowledge inertia. Expert systems with applications, 22(1), 21-31. https://doi.org/10.1016/S0957-4174(01)00046- X
Lithner, J. (2000). Mathematical reasoning in school tasks. Educational studies in Mathematics, 41(2), 165-190.
Lithner, J. (2003). Students' mathematical reasoning in university textbook exercises. Educational studies in mathematics, 52(1), 29-55.
Lwanga, S. K., Lemeshow, S., & World Health Organization. (1991). Sample size determination in health studies: a practical manual.
Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6.Developmental science, 17(5), 714-726. https://doi.org/10.1111/desc.12152
Matlin, M. W. (1998). Cognition. Wiley.
Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of
problem solving. Instructional science, 26(1-2), 49-63.
McDonnell, J. (2016). Scaffolding practices: A study of design practitioner
engagement in design education. Design studies, 45, 9-29.
McKight, P. E., & Najab, J. (2010). Kruskal‐wallis test. The corsini encyclopedia
of psychology, 1-1. https://doi.org/10.1002/9780470479216.corpsy0491 McLeod, D. B. (1989). Beliefs, attitudes, and emotions: New views of affect in mathematics education. In Affect and mathematical problem solving (pp.
245-258). Springer, New York, NY.
Mensah, J. K., Okyere, M., & Kuranchie, A. (2013). Student attitude towards
mathematics and performance: Does the teacher attitude matter. Journal of
Education and Practice, 4(3), 132-139.
Merbitz, C., Morris, J., & Grip, J. C. (1989). Ordinal scales and foundations of
misinference. Archives of physical medicine and rehabilitation, 70(4), 308-
312.
Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training
                            272

 versus worked‐out examples on students' mathematical reasoning. British Journal of Educational Psychology, 73(4), 449- 471. https://doi.org/10.1348/000709903322591181
Miles, J. (2014). R squared, adjusted R squared.Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat06627
Miller, George A,. (1974). Psychology and Communication. Voice of America. Washington DC. USA.
Miyashiro, R., & Takano, Y. (2015). Subset selection by Mallows’ Cp: A mixed integer programming approach. Expert Systems with Applications, 42(1), 325-331. https://doi.org/10.1016/j.eswa.2014.07.056
Mohamed, L., & Waheed, H. (2011). Secondary students’ attitude towards mathematics in a selected school of Maldives. International Journal of humanities and social science, 1(15), 277-281.
Moore, M. G. (1973). Speculations on a Definition of Independent Study.
Morgan, G. A., Harmon, R. J., & Maslin-Cole, C. A. (1990). Mastery motivation: Definition and measurement. Early education and Development, 1(5), 318-
339.
Mujiman, H. (2011). Belajar Mandiri. UNS Perss: Surakarta
Murad, M. H., & Varkey, P. (2008). Self-directed learning in health professions
education. Annals Academy of Medicine Singapore, 37(7), 580.
Nasution. (1982). Teknologi Pendidikan. Bandung: Bumi Aksara.
Nicolaidou, M., & Philippou, G. (2003). Attitudes towards mathematics, self-
efficacy and achievement in problem solving. European Research in
Mathematics Education III. Pisa: University of Pisa, 1-11.
Notonagoro. (1973). Pidato Penganugerahan Gelar Doktor Honoris Causa dalam Ilmu Filsafat pada Prof Drs. Notonagoro, S.H. Yogyakarta: Universitas
Gadjah Mada Yogyakarta.
Nowaczyk, R. H. (1984). The relationship of problem-solving ability and course performance among novice programmers. International Journal of Man- Machine Studies, 21(2), 149-160. https://doi.org/10.1016/S0020- 7373(84)80064-4
                       273

 Nurjan, S. (2016). Psikologi belajar. Ponorogo : Wade Group.
Ogawa, M. (1995). Science education in a multiscience perspective. Science
education, 79(5), 583-593.
Olejnik, S., Mills, J., & Keselman, H. (2000). Using Wherry's adjusted R 2 and
Mallow's Cp for model selection from all possible regressions. The Journal of experimental education, 68(4), 365-380. https://doi.org/10.1080/00220970009600643
Olshavsky, R. W., & Lee, D. H. (1993). Self-gifts: A metacognition perspective. ACR North American Advances.
Ostertagova, E., Ostertag, O., & Kováč, J. (2014). Methodology and application of the Kruskal-Wallis test. In Applied Mechanics and Materials (Vol. 611, pp. 115-120). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.611.115
Özcan, Z. Ç. (2016). The relationship between mathematical problem-solving skills and self-regulated learning through homework behaviours, motivation, and metacognition. International Journal of Mathematical Education in Science and Technology, 47(3), 408- 420. https://doi.org/10.1080/0020739X.2015.1080313
Pajares, F. (1996). Self-efficacy beliefs and mathematical problem-solving of gifted students. Contemporary educational psychology, 21(4), 325-344. https://doi.org/10.1006/ceps.1996.0025
Pajares, F., & Kranzler, J. (1995). Self-efficacy beliefs and general mental ability in mathematical problem-solving. Contemporary educational psychology, 20(4), 426-443. https://doi.org/10.1006/ceps.1995.1029
Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86(2), 193–203. https://doi.org/10.1037/0022-0663.86.2.193
Pajares, F., & Miller, M. D. (1995). Mathematics self-efficacy and mathematics performances: The need for specificity of assessment.Journal of Counseling Psychology, 42(2), 190–198. https://doi.org/10.1037/0022- 0167.42.2.190
                      274

 Pajares, F., & Miller, M. D. (1995). Mathematics self-efficacy and mathematics performances: The need for specificity of assessment. Journal of counseling psychology, 42(2), 190.https://doi.org/10.1080/00220973.1997.9943455
Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics, 57(1), 120-125. https://doi.org/10.1111/j.0006- 341X.2001.00120.x
Paris, S. G., & Paris, A. H. (2001). Classroom applications of research on self- regulated learning. Educational psychologist, 36(2), 89-101. https://doi.org/10.1207/S15326985EP3602_4
Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of experimental child psychology, 80(1), 44-57. https://doi.org/10.1006/jecp.2000.2626
Passolunghi, M. C., Vercelloni, B., & Schadee, H. (2007). The precursors of mathematics learning: Working memory, phonological ability and numerical competence. Cognitive development, 22(2), 165-184. https://doi.org/10.1016/j.cogdev.2006.09.001
Peng, P., Lin, X., Ünal, Z. E., Lee, K., Namkung, J., Chow, J., & Sales, A. (2020). Examining the mutual relations between language and mathematics: A meta-analysis. Psychological Bulletin, 146(7), 595.
Peng, P., Wang, C., & Namkung, J. (2018). Understanding the cognition related to mathematics difficulties: A meta-analysis on the cognitive deficit profiles and the bottleneck theory. Review of Educational Research, 88(3), 434-476.
Petancio, J. A. M. (2020). Concepts in Context for Technical-Vocational and Livelihood Track Mathematics Curricular Enhancements. The Normal Lights, 14(2).
Peterson, P. L., Carpenter, T., & Fennema, E. (1989). Teachers' knowledge of students' knowledge in mathematics problem solving: Correlational and case analyses.Journal of Educational Psychology, 81(4), 558– 569. https://doi.org/10.1037/0022-0663.81.4.558
Peterson, R. A., & Kim, Y. (2013). On the relationship between coefficient alpha
                           275

 and composite reliability. Journal of Applied Psychology, 98(1), 194–
198. https://doi.org/10.1037/a0030767
Pimta, S., Tayraukham, S., & Nuangchalerm, P. (2009). Factors Influencing
Mathematic Problem-Solving Ability of Sixth Grade Students. Online
Submission, 5(4), 381-385.
Pintrich, P. R. (1995). Understanding self‐regulated learning. New directions for
teaching and learning, 1995(63), 3-
12.https://doi.org/10.1002/tl.37219956304
Polya, G. (1973). How to solve it, second edition. Princeton : New Jersey Princeton
University Press.
Pratt, M. W., Green, D., MacVicar, J., & Bountrogianni, M. (1992). The mathematical parent: Parental scaffolding, parenting style, and learning outcomes in long-division mathematics homework. Journal of applied developmental psychology, 13(1), 17-34. https://doi.org/10.1016/0193- 3973(92)90003-Z
Pressley, M., Wood, E., Woloshyn, V. E., Martin, V., King, A., & Menke, D. (1992). Encouraging mindful use of prior knowledge: Attempting to construct explanatory answers facilitates learning. Educational psychologist, 27(1), 91-109. https://doi.org/10.1207/s15326985ep2701_7
Priyitno, E. (1989). Motivasi Dalam Belajar. Jakarta: P2LPTK
Pugalee, D. K. (2001). Writing, mathematics, and metacognition: Looking for connections through students' work in mathematical problem solving. School science and mathematics, 101(5), 236-
245. https://doi.org/10.1111/j.1949-8594.2001.tb18026.x
Purpura, D. J., & Ganley, C. M. (2014). Working memory and language: Skill- specific or domain-general relations to mathematics?.Journal of Experimental Child Psychology, 122, 104-
121.https://doi.org/10.1016/j.jecp.2013.12.009
Purpura, D. J., Baroody, A. J., & Lonigan, C. J. (2013). The transition from informal
to formal mathematical knowledge: Mediation by numeral knowledge. Journal of Educational Psychology, 105(2), 453–
                           276

 464. https://doi.org/10.1037/a0031753.
Pylväs, L., & Nokelainen, P. (2017). Finnish WorldSkills achievers’ vocational talent development and school-to-work pathways. International journal for research in vocational education and training, 4(2), 95-116.
Quirk, M. (2006). Intuition and metacognition in medical education: Keys to developing expertise. New York, NY: Springer Publishing Company, Inc
Reigeluth, C. M. (2018). An instructional theory for the post-industrial age. Foundations of Learning and Instructional Design Technology. Rittle-Johnson, B., & Koedinger, K. R. (2005). Designing knowledge scaffolds to
support mathematical problem solving. Cognition and Instruction, 23(3),
313-349. https://doi.org/10.1207/s1532690xci2303_1
Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual
understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346– 362. https://doi.org/10.1037/0022-0663.93.2.346
Robinson, P. J., & Staples, J. (1993). Formalizing a hierarchical structure of practical mathematical reasoning. Journal of Logic and Computation, 3(1), 47-61.
Rojas-Drummond, S., Torreblanca, O., Pedraza, H., Velez, M., & Guzman, K. (2013). ‘Dialogic scaffolding’: Enhancing learning and understanding in collaborative contexts. Learning, Culture and Social Interaction, 2(1), 11- 21. https://doi.org/10.1016/j.lcsi.2012.12.003
Sahney, S., Banwet, D. K., & Karunes, S. (2006). An integrated framework for quality in education: Application of quality function deployment, interpretive structural modelling and path analysis.Total Quality Management & Business Excellence, 17(2), 265- 285. https://doi.org/10.1080/14783360500450376
Sajadi, M., Amiripour, P., & Rostamy-Malkhalifeh, M. (2013). The examining mathematical word problems solving ability under efficient representation aspect. Mathematics Education Trends and Research, 2013, 1-11. doi:10.5899/2013/metr-00007
                             277

 Salthouse, T. A., & Babcock, R. L. (1991). Decomposing adult age differences in working memory. Developmental psychology, 27(5), 763.
Samaden, I. S. B. (2021). Elements of Attitude In The Leadership Construct Of Special Education Head Teachers In Malaysia.Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 5151-5156.
Samsuddin, S. J. (2021). Elements Of Work Type In The Construct Of Special Education Teacher Workload In Malaysia. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 5259-5263.
Sand-Jecklin, K. (2007). The impact of active/cooperative instruction on beginning nursing student learning strategy preference. Nurse Education Today, 27(5), 474-480. https://doi.org/10.1016/j.nedt.2006.08.006
Santos, J. R. A. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales. Journal of extension, 37(2), 1-5.
Santoso, R.H. (2006). Hubungan Antara Sikap Terhadap Matematika, Kecerdasan Emosional Dalam Interaksi Sosial Di Kelas Dengan Hasil Belajar Matematika Siswa Smp Negeri 5 Yogyakarta Tahun 2006. https://eprints.uny.ac.id/7239/1/PM-4%20-%20Rusgianto%20H.S.pdf
Sardiman, A,M. (1990). Interaksi dan Motivasi Belajar Mengajar. Jakarta: Rajawali
Sawilowsky, S., & Fahoome, G. (2014). Kruskal‐Wallis Test: Basic.Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat06567
Schiefele, U. (1991). Interest, learning, and motivation.Educational psychologist, 26(3-4), 299-323.
Schmitt, N. (1996). Uses and abuses of coefficient alpha.Psychological Assessment, 8(4), 350–353. https://doi.org/10.1037/1040-3590.8.4.350
Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM, 42(2), 149-161.
Schommer-Aikins, M., Duell, O. K., & Hutter, R. (2005). Epistemological beliefs, mathematical problem-solving beliefs, and academic performance of middle school students. The Elementary School Journal, 105(3), 289-304.
                             278

 Schönemann, P. H., & Tucker, L. R. (1967). A maximum likelihood solution for the method of successive intervals allowing for unequal stimulus dispersions. Psychometrika, 32(4), 403-417.
Schraw, G. & Dennison, R. S. (1994). Assessing metacognitive awareness [Versi electronik]. Contempory Educational Psychology, 19, 460-475
Schunk, D. H. (1990). Goal setting and self-efficacy during self-regulated learning. Educational psychologist, 25(1), 71-86. https://doi.org/10.1207/s15326985ep2501_6
Seigneuric, A., & Ehrlich, M. F. (2005). Contribution of working memory capacity to children’s reading comprehension: A longitudinal investigation. Reading and writing, 18(7-9), 617.
Sella, F., Sader, E., Lolliot, S., & Cohen Kadosh, R. (2016). Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(9), 1458– 1472. https://doi.org/10.1037/xlm0000249
Senn, T. E., Espy, K. A., & Kaufmann, P. M. (2004). Using path analysis to understand executive function organization in preschool children. Developmental neuropsychology, 26(1), 445-464. https://doi.org/10.1207/s15326942dn2601_5
Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning from a commognitive standpoint. The journal of the learning sciences, 16(4), 565-613.
Shafie, A. S. B. (2021). Elements of Safety In Job Satisfaction Of Special Education Teachers In Malaysia. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 5274-5278.
Simon, H. A. (1954). Spurious correlation: A causal interpretation. Journal of the American statistical Association, 49(267), 467-479. https://doi.org/10.1080/01621459.1954.10483515
Siswoyo, D. (1996). Ilmu pendidikan dalam tantangan.Jurnal Cakrawala Pendidikan, 1(1).
                           279

Siswoyo, D. (2015). Ilmu Pendidikan. Yogyakarta: UNY Press
Soboleva, E. V., Chirkina, S. E., Kalugina, O. A., Shvetsov, M. Y., Kazinets, V. A., & Pokaninova, E. B. (2020). Didactic potential of using mobile technologies in the development of mathematical thinking.EURASIA Journal of Mathematics, Science and Technology Education, 16(5), em1842.
Soo, K. Y., Hasan, N. H., Syed Ahmad, T. S. A., Ismail, N., Zainon, S., & Abdullah, M. (2021). Exploring the design of online content for e-learning/Soo Kum Yoke...[et al.].
Spouse, J. (1998). Scaffolding student learning inclinical practice. Nurse Education Today, 18(4), 259-266. https://doi.org/10.1016/S0260-6917(98)80042-7
Steen, L. A. (1999). Twenty Questions about Mathematical Reasoning.
Surya, E., & Putri, F. A. (2017). Improving Mathematical Problem-Solving Ability and Self-Confidence of High School Students through Contextual Learning
Model. Journal on Mathematics Education, 8(1), 85-94.
Susanto, A. (2021).Filsafat ilmu: Suatu kajian dalam dimensi ontologis,
epistemologis, dan aksiologis. Bumi Aksara.
Susanto, A. (2021).Filsafat ilmu: Suatu kajian dalam dimensi ontologis,
epistemologis, dan aksiologis. Bumi Aksara.
Sutter, J. M., & Kalivas, J. H. (1993). Comparison of forward selection, backward
elimination, and generalized simulated annealing for variable selection. Microchemical journal, 47(1-2), 60-66. https://doi.org/10.1006/mchj.1993.1012
Swanson, H. L., & Beebe-Frankenberger, M. (2004). The Relationship Between Working Memory and Mathematical Problem Solving in Children at Risk and Not at Risk for Serious Math Difficulties. Journal of Educational Psychology, 96(3), 471–491. https://doi.org/10.1037/0022-0663.96.3.471
Syafril, M. P., & Zen, Z. (2019). Dasar-dasar ilmu pendidikan. Prenada Media. Syam, S., Cecep, H., Fahmi, A. I., Chamidah, D., Damayanti, W. K., Saputro, A. N. C., ... & Haris, A. (2021). Pengantar Ilmu Pendidikan. Yayasan Kita
Menulis.
Syam, S., Cecep, H., Fahmi, A. I., Chamidah, D., Damayanti, W. K., Saputro, A.
                           280

 N. C., ... & Haris, A. (2021). Pengantar Ilmu Pendidikan. Yayasan Kita
Menulis.
Tall, D. (1998). Changing attitudes to university mathematics through problem solving. Educational Studies in Mathematics, 37(1), 67-82.
Tastle, W. J., & Wierman, M. J. (2007). Consensus and dissention: A measure of ordinal dispersion. International Journal of Approximate Reasoning, 45(3), 531-545. https://doi.org/10.1016/j.ijar.2006.06.024
Taylor, K. M., & Betz, N. E. (1983). Applications of self-efficacy theory to the understanding and treatment of career indecision. Journal of vocational behavior, 22(1), 63-81. https://doi.org/10.1016/0001-8791(83)90006-4
Trisiana, A. (2015). OPTIMALISASI BELAJAR MANDIRI TATA PAMONG (Tinjauan Kritis dan Pengembangan Terhadap Peningkatan Kualitas Sumber Daya Manusia yang Berkarakter).Widya Wacana: Jurnal Ilmiah, 9(2).
Tristán-López, A. (2008). Modificación al modelo de Lawshe para el dictamen cuantitativo de la validez de contenido de un instrumento objetivo. Avances en medición, 6(1), 37-48.
Van Uum, M. S., Verhoeff, R. P., & Peeters, M. (2017). Inquiry-based science education: Scaffolding pupils’ self-directed learning in open inquiry. International Journal of Science Education, 39(18), 2461-2481.
Verenikina, I. (2008). Scaffolding and learning: Its role in nurturing new learners. Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17(2), 228–
243. https://doi.org/10.1037/a0027127
Wæge, K. (2010, January). Motivation for learning mathematics in terms of needs and goals. In Proceedings of CERME (Vol. 6, pp. 84-93).
Walter, J. G., & Hart, J. (2009). Understanding the complexities of student motivations in mathematics learning.The Journal of Mathematical Behavior, 28(2-3), 162-170.
Wang, Q., Koval, J. J., Mills, C. A., & Lee, K. I. D. (2007). Determination of the 281
                             
selection statistics and best significance level in backward stepwise logistic regression. Communications in Statistics-Simulation and Computation, 37(1), 62-72. https://doi.org/10.1080/03610910701723625
Wang, Y., & Liu, Q. (2006). Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock–recruitment relationships. Fisheries Research, 77(2), 220-225. https://doi.org/10.1016/j.fishres.2005.08.011
Webb, N. (1975). An Exploration of Mathematical Problem-Solving Processes. Weinberg, R., Gould, D., & Jackson, A. (1979). Expectations and performance: An empirical test of Bandura's self-efficacy theory. Journal of Sport and
Exercise Psychology, 1(4), 320-331.https ://doi.org/10.1123/jsp.1.4.320 Wells, A. (2009). Metacognitive therapy for anxiety and depression. New York,
NY: the Guildford Press
Widjajanti, D. B. (2009, December). Kemampuan pemecahan masalah matematis
mahasiswa calon guru matematika: apa dan bagaimana mengembangkannya. In Seminar Nasional Matematika dan Pendidikan Matematika (Vol. 5).
Wilson, J. W., Fernandez, M. L., & Hadaway, N. (1993). Mathematical problem solving. Research ideas for the classroom: High school mathematics, 57, 78.
Wilson, J., & Clarke, D. (2004). Towards the modelling of mathematical metacognition. Mathematics Education Research Journal, 16(2), 25-48.\
Wood, S. L., & Lynch Jr, J. G. (2002). Prior knowledge and complacency in new product learning. Journal of Consumer Research, 29(3), 416-426. https://doi.org/10.1086/344425
Woolfolk, Anita. (2009). Educational Psychology: Active Learning Edisi Kesepuluh Bagian Kedua. Yogyakarta: Pustaka Pelajar
Wyndhamn, J., & Säljö, R. (1997). Word problems and mathematical reasoning— a study of children's mastery of reference and meaning in textual realities. Learning and Instruction, 7(4), 361-382. https://doi.org/10.1016/S0959-4752(97)00009-1
                          282

 Wyndhamn, J., & Säljö, R. (1997). Word problems and mathematical reasoning— a study of children's mastery of reference and meaning in textual realities. Learning and Instruction, 7(4), 361-382. https://doi.org/10.1016/S0959-4752(97)00009-1
Young, J. W. (1977). The function of theory in a dilemma of path analysis. Journal of Applied Psychology, 62(1), 108–110. https://doi.org/10.1037/0021- 9010.62.1.108
Zakaria, E. (2007). Trend Pengajaran dan Pembelajaran Matematik. Kuala Lumpur:Utusan Publications dan Distributors SDN BHD.
Zakaria, E., Chin, L. C., & Daud, M. Y. (2010). The effects of cooperative learning on students’ mathematics achievement and attitude towards mathematics. Journal of social sciences, 6(2), 272-275.
Zan, R., & Di Martino, P. (2007). Attitude toward mathematics: Overcoming the positive/negative dichotomy. The Montana Mathematics Enthusiast, 3, 157-168.
Zhang, Q., Zeng, T., Chen, Y., & Li, X. (2012). Assisting undergraduate nursing students to learn evidence-based practice through self-directed learning and workshop strategies during clinical practicum. Nurse education today, 32(5), 570-575. https://doi.org/10.1016/j.nedt.2011.05.018
Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational psychologist, 25(1), 3-17. https://doi.org/10.1207/s15326985ep2501_2
Zimmerman, B. J., & Martinez-Pons, M. (1988). Construct validation of a strategy model of student self-regulated learning.Journal of Educational Psychology, 80(3), 284–290. https://doi.org/10.1037/0022-0663.80.3.284
Zimmerman, B. J., & Martinez-Pons, M. (1990). Student differences in self- regulated learning: Relating grade, sex, and giftedness to self-efficacy and strategy use. Journal of Educational Psychology, 82(1), 51– 59. https://doi.org/10.1037/0022-0663.82.1.51
Zimmerman, B. J., Bonner, S., & Kovach, R. (1996). Psychology in the classroom: A series on applied educational psychology. Developing self-regulated
                          283

learners: Beyond achievement to self-efficacy. American Psychological
Association. https://doi.org/10.1037/10213-000.
Gorgut, R. C., & Dede, Y. (2022). Mathematics teachers’ assessment of mathematical understanding. Studies in Educational Evaluation, 75, 101190.
Rodriguez Vasquez, F. M., & Ariza Hernandez, F. J. (2021). Bayesian Assessment of Undergraduate Students About the Real Function Mathematical Concept. Djumaboev, S., Usmonov, S., & Ergashev, U. (2021). Competence Of Computer Modeling In The Context Of Modern Education. Mental Enlightenment
Scientific-Methodological Journal, 2021(5), 128-138.
Davis‐Kean, P. E., Domina, T., Kuhfeld, M., Ellis, A., & Gershoff, E. T. (2022). It
matters how you start: Early numeracy mastery predicts high school math course‐taking and college attendance. Infant and Child Development, 31(2), e2281.
van Dijck, J. P., Fias, W., & Cipora, K. (2022). Spatialization in working memory and its relation to math anxiety. Annals of the New York Academy of Sciences.
citation:   Pamungkas, Tubagus and Budiningsih, Asri  (2022) Analisis Faktor Determinasi Kemampuan Pemecahan Masalah Matematis Siswa SMK Di Wilayah Hinterland Batam.  S3 thesis, Program Pascasarjana.   
document_url: http://eprints.uny.ac.id/74632/1/disertasi-tubagus%20pamungkas-17703261047.pdf