eprintid: 70276 rev_number: 9 eprint_status: archive userid: 1290 dir: disk0/00/07/02/76 datestamp: 2021-03-24 02:56:33 lastmod: 2021-05-28 04:49:06 status_changed: 2021-03-24 02:56:33 type: thesis metadata_visibility: show creators_name: Hadiati, Soka creators_name: Kuswanto, Heru title: Model Kerja Laboratorium Komprehensif Berbasis Penalaran untuk Meningkatkan HOTS dan Sikap Ilmiah Mahasiswa Pendidikan Fisika. ispublished: pub subjects: F2 divisions: pps_ip full_text_status: restricted keywords: HOTS, kerja laboratorium, model-based reasoning, sikap ilmiah. abstract: Penelitian ini bertujuan untuk menghasilkan model kerja laboratorium komprehensif berbasis penalaran yang: (1) memiliki karakteristik model yang dapat meningkatkan higher order thinking skill (HOTS) dan sikap ilmiah mahasiswa pendidikan fisika; (2) layak; (3) praktis; (4) efektif untuk meningkatkan HOTS dan sikap ilmiah mahasiswa pendidikan fisika. Model ini merupakan model inovatif dalam kerja laboratorium yang memenuhi tuntutan era revolusi industri 4.0. Penelitian ini merupakan penelitian dan pengembangan dengan langkah- langkah: (1) Penelitian dan pengumpulan informasi dengan metode studi eksploratif. (2) Perencanaan dan pengembangan produk awal dengan metode content analysis untuk mendapatkan instrumen penelitian serta kelayakannya berdasarkan penilaian para Ahli. (3) Pengujian produk dilakukan di STKIP Singkawang, IKIP PGRI Pontianak, dan Universitas Tanjungpura dengan menggunakan metode eksperimen sehingga didapatkan kepraktisan model dari angket respon mahasiswa/dosen serta keterlaksanaan model dalam kerja laboratorium dengan observasi. Data keefektifan model didapatkan dengan soal tes HOTS dan skala sikap ilmiah kemudian dianalisis dengan uji MANOVA, gain-test, serta analisis kecocokan model dengan SEM. (4) Disseminasi berupa publikasi di jurnal nasional dan internasional. Hasil penelitian ini adalah: (1) Model kerja laboratorium komprehensif berbasis penalaran memiliki karakteristik sintaks terdiri atas: merumuskan masalah, mengkaji teori, merancang eksperimen, melakukan eksperimen, menganalisis hasil dan membuat kesimpulan; dampak pengajaran yaitu HOTS dan dampak pengiring yaitu sikap ilmiah; sistem sosial yang kondusif melalui interaksi, komunikasi, dan kerjasama antar peserta didik; prinsip reaksi berupa pengarahan dan bimbingan dari pendidik; sistem pendukung berupa perangkat teknologi berbasis arduino dan perangkat pembelajaran. (2) Model kerja laboratorium komprehensif berbasis penalaran layak digunakan untuk meningkatkan HOTS dan sikap ilmiah menurut penilaian para Ahli dengan kriteria sangat baik. (3) Model kerja laboratorium komprehensif berbasis penalaran praktis diterapkan dalam pembelajaran dengan kriteria sangat baik. (4) Model kerja laboratorium komprehensif berbasis penalaran efektif untuk meningkatkan sikap ilmiah dan HOTS mahasiswa pendidikan fisika dilihat dari perbedaan skor yang signifikan antara kelas kontrol dan kelas eksperimen, peningkatan skor, dan kecocokan model. date: 2020-01-23 date_type: published institution: Program Pascasarjana department: Ilmu Pendidikan thesis_type: disertasi referencetext: Abdullah, A.H., Mokhtar, M., Halim, N.D.A., Ali, D.F., Tahir, L.F & Kohar, U.H.A. (2017). Mathematics Teachers' Level of Knowledge and Practice on the Implementation of Higher-Order Thinking Skills (HOTS). Eurasia Journal of Mathematics, Science & Technology Education, 13 (1). Abubakar, I., Khalid, S.N., Mustafa, Shareef, M. W.H., &. Mustapha, M. (2017). Calibration of Zmpt101b Voltage Sensor Module Using Polynomial Regression For Accurate Load Monitoring. Journal of Engineering And Applied Sciences, 12 (4), 1076-1084. Afflerbach, P., Cho, B.Y., & Kim, J.Y. (2015). Conceptualizing and Assessing Higher-Order Thinking in Reading. Theory Into Practice, 54(3), 203–212. doi: 10.1080/00405841.2015.1044367 Ahmad, S., Prahmana, R. C. I., Kenedi, A. K., Helsa, Y., Arianil, Y, & Zainil, M. (2017). The instruments of higher order thinking skills. Journal of Physics: Conference Series, 943, 012053.doi: https://doi.org/10.1088/1742- 6596/943/1/012053. Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives: Complete Edition. New York: Longman. Aktamiş, H., & Ergin, Ö. (2008). The effect of scientific process skills education on students’scientific creativity, science attitudes. Asian Fasific Forum on Science Learning and Teaching, 9(1), 21. Amir-Mofidi, S., Amiripour, P., & Bijan-zadeh, M. H. (2012). Instruction of mathematical concepts through analogical reasoning skills. Indian Journal of Science and Technology, 5(6), 7. Andersson, J., & Enghag, M. (2017). The relation between students’ communicative moves during laboratory work in physics and outcomes of their actions. International journal of Science Education, 39(2), 158–180. doi: 10.1080/09500693.2016.1270478. Anwar, H. (2000). Penilaian Sikap Ilmiah dalam Pembelajaran Sains. Jurnal Pelangi Ilmu, 2 (5), 103-114. Asih, T. (2018). Students’ Level Cognitive Development In Metro City. Didaktika Biologi, 2 (1), 9–17. Atkin, K. (2016). Using the Arduino with MakerPlot software for the display of resonance curves characterisic of a series LCR circuit. Physics Education, 51(6), 065006. doi: https://doi.org/10.1088/0031-9120/51/6/065006. Atkin, K. (2017). Using the Arduino with MakerPlot software for the display of electrical device characteristics. Physics Education, 52(6), 065007. doi: https://doi.org/10.1088/1361-6552/aa83e7. Arwood, E.L. (2011). Language Function An Introduction to Pragmatic Assessment and Intervention for Higher Order Thinking and Better Literacy. London: Jessica Kingsley Publishers. Araújo, A., Portugal, D., Couceiro, M.S., & Rocha, R.P. (2013). Integrating Arduino-based Educational Mobile Robots in ROS. Proceedings of the 13th International Conference on Mobile Robots and Competitions. Portugal, 24 April, 2013. Bayle, J. (203). C Programming For Arduino. Birmingham: Packt Publishing. Brookhart, S. M. (2010). How to assess higher-order thinking skills in your classroom. Alexandria : ASCD. Bundu, P. (2010). Peningkatan Sikap Ilmiah Melalui Pendekatan Konstruktivistik dalam Pembelajaran IPA di Sekolah Dasar. Jurnal Sekolah Dasar, 19 (2). Baharom, S., Khoiry, M.A., Hamid, R., Mutalib, A & Hamzah,N. (2015). Assessment of psychomotor domain in a problem-based concrete labrotary. Journal of Engineering Science and Technology, 10(10), 1-10. Begolli, K.N., & Richland, L. E. (2017). Bridging Cognitive Science and Real Classrooms: A Video Methodology for Experimental Research in Education. Journal of Experimental Education, 1-19. doi:http://dx.doi.org/10.1080/00220973.2017.1347775. Balım, A., G. (2009). The Effects of Discovery Learning on Students’ Success and Inquiry Learning Skills. Eurasian Journal of Educational Research, 35, 1- 20. Bakri, H. (2015). Kearifan Lokal Pela Gandong di Kota Ambon. Jurnal Magister Ilmu Politik Universitas Hasanuddin, 1, 10. Balta, N., Mason, A. J., & Singh, C. (2016). Surveying Turkish high school and university students’ attitudes and approaches to physics problem solving. Physical Review Physics Education Research, 12(1). doi: https://doi.org/10.1103/PhysRevPhysEducRes.12.010129. 218 Bolotin, T., Antimirova, M., Noack, A & Petrov, A. (2011). Attitudes about science and conceptual physics learning in university introductory physics courses. Physical Review Special Topics - Physics Education Research, 7, 1-9. Borg, W.R., & Gall, M.D. (1983). Educational research an introduction. New York: Longman. Boyd, B.L., Dooley, K.E & Felton, S.F. (2006). Measuring Learning In The Affective Domain Using Reflective Writing About A Virtual International Agriculture Experience. Journal of Agricultural Education, 47(3), 24-32. Borowske, K. (7 Oktober 2005). Curiosity and Motivation-to-Learn. ACRL Twelfth National Conference, Minneapolis: Minnesota. Budsankom, P., Sawangboon, T., Damrongpanit, S & Chuensirimongkol, J.(2015).Factors affecting higher order thinking skills of students: A meta- analytic structural equation modeling study. Educational Research and Reviews, 10, 19, 2639-2652. Buxton, C.A & Provenzo, A.F. (2011). Teaching Science Elementary & Middle Schools. United Kingdom: SAGE Publications. Can, S., Aksay, E.Ç & Orhan, T. Y. (2015). Investigation of pre-service science teachers’ attitudes towards laboratory safety. Procedia - Social and Behavioral Sciences, 174, 3131 – 3136. Candrasekaran, S. (2014). Developing Scientific Attitude, Critical Thinking and Creative Intelligence of Higher Secondary School Biology Students by Applying Synectics Techniques. International Journal of Humanities and Social Science Invention, 3 (6), 2319 – 7714. Chametzky, B. (2014). Andragogy and Engagement in Online Learning: Tenets and Solutions. Creative Education, 5, 813-82, 116-130. Chiappetta, E.L &Koballa T.R. (2010). Science Instruction In The Middle And Secondary Schools, Developing fundamental Knowledge and skill. USA: Pearson. Collette, A.T & Chiappetta, E.L. (1994). Science Instruction In The Middle And Secondary Schools. USA: Macmillan Publishing. Cibik, A. S., & YalClm, N. (2011). The effect of teaching the direct current concept with analogy technique to the attitudes of science education students toward physics. Procedia - Social and Behavioral Sciences, 15, 2647–2651. doi: https://doi.org/10.1016/j.sbspro.2011.04.163 219 Cigrik, E., & Ozkan, M. (2015). The Investigation of The Effect of Visiting Science Center on Scientific Process Skills. Procedia - Social and Behavioral Sciences, 197, 1312–1316. doi: https://doi.org/10.1016/j.sbspro.2015.07.405 Clement, J., & Rea-Ramirez, M. A. (Ed.). (2008). Model based learning and instruction in science. New York: Springer. Dahar, R.W. (1989). Teori Belajar. Jakarta: Erlangga Press. Das, R.C. (1985). Science Teaching in Schools. New Delhi: Sterling Publisher. Décamp, N & Viennot, L. (2015). Co-development of Conceptual Understanding and Critical Attitude: Analyzing texts on radiocarbon dating. International Journal of Science Education, 37, 12, 2038–2063. Dick, W., Carey, L. & Carey, J.O. (2001). The systematic Design of Instruction. USA.: Addison-Wesley. DeSchryver, M. (2017). Using the Web as a Higher Order Thinking Partner: Case Study of an Advanced Learner Creatively Synthesizing Knowledge on the Web. Journal of Educational Computing Research, 55(2), 240–271. doi: https://doi.org/10.1177/0735633116667356 Dong Wei, Y. (2001). Model Based Reasoning in Cognitive Science. Studies in Computational Intelligence (SCI), 64,273-291. Dounas-Frazer, D. R., & Lewandowski, H. J. (2017). Electronics lab instructors’ approaches to troubleshooting instruction. Physical Review Physics Education Research, 13(1). doi: https://doi.org/10.1103/PhysRevPhysEducRes.13.010102 Dounas-Frazer, D. R., Van De Bogart, K. L., Stetzer, M. R., & Lewandowski, H. J. (2016). Investigating the role of model-based reasoning while troubleshooting an electric circuit. Physical Review Physics Education Research, 12(1). doi: https://doi.org/10.1103/PhysRevPhysEducRes.12.010137. Durfee, W. (2011). Arduino Microcontroller Guide. Minnesota: University of Minnesota. Dewey, J. (1997). Experience and Education. New York: Simon & Schuster 220 Espindola, P.R., Cena, C.R., Alves, D C B., Bozano D.F., & Goncalves, A.M.B. (2018). Use of an Arduino to study buoyancy force. Physics Education, 53, 05010. Ekawati, E. Y. (2017). A model of scientific attitudes assessment by observation in physics learning based scientific approach: case study of dynamic fluid topic in high school. Journal of Physics: Conference Series, 795, 012056.doi: https://doi.org/10.1088/1742-6596/795/1/012056 Eren, C. D., Bayrak, B. K., & Benzer, E. (2015). The Examination of Primary School Students’ Attitudes Toward Science Course and Experiments in Terms of Some Variables. Procedia - Social and Behavioral Sciences, 174, 1006–1014. doi: https://doi.org/10.1016/j.sbspro.2015.01.1245. Ertikanto, C., Herpratiwi, Yunarti, T. & Saputra, A. (2017). Development and Evaluation of a Model-Supported Scientific Inquiry Training Program for Elementary Teachers in Indonesia. International Journal of Instruction, 10(3), 93-108. doi: https://doi.org/10.12973/iji.2017.1037a. Erlina, N., Susantini, E., Wasis, Wicaksono, I., & Pandiangan, P. (2018). The Effectiveness of Evidence-Based Reasoning In Inquiry-Based Physics Teaching To Increase Students’ Scientific Reasoning. Journal of Baltic Science Education, 17 (6), 972-985. Fakhruddin, Eprina, A., & Syahril. (2010). Sikap Ilmiah Siswa Dalam Pembelajaran Fisika Dengan Penggunaan Media Komputer Melalui Model Kooperatif Tipe STAD Pada Siswa Kelas X3 SMA Negeri I Bangkinang Barat. Jurnal Geliga Sains. 4 (1), 18-22 Freitas, W.P.S., Cena, C.R., Alves, D. C.B., & Goncalves, A.M.B. (2018). Arduino- based experiment demonstrating Malus’s law. Physics Education, 53, 035034. Fotou, N., & Abrahams, I. (2016). Students’ analogical reasoning in novel situations: theory-like misconceptions or p-prims? Physics Education, 51(4), 044003. doi: https://doi.org/10.1088/0031-9120/51/4/044003. Fruchter, R. (2001). Dimensions of Teamwork Education. International Journal Engng, 17, 4-5, 426-430. Gleason, N.W. (Eds). (2018). Higher Education In The Era of The Fourth Industrial Revolution Palgrave Macmillan: Singapore. Girault, I., d’Ham, C., Ney, M., Sanchez, E., & Wajeman, C. (2012). Characterizing the Experimental Procedure in Science Laboratories: A preliminary step towards students experimental design. International Journal of Science 221 Education, 34(6), 825–854. doi: https://doi.org/10.1080/09500693.2011.569901 Giancoli, D.C. (2005). Physics: Principle with applications (Edisi ke – 6). Upper saddle NJ : Pearson Education. Inc. Gok, T. (2014). Students’ Achievement, Skill and Confidence in Using Stepwise Problem-Solving Strategies. EURASIA Journal of Mathematics, Science & Technology Education, 10(6). doi: https://doi.org/10.12973/eurasia.2014.1223a. Grabowik, C., Kalinowski, K., Krenczyk, D., Paprocka, I., & Kempa, W. (2016). Application of case-based reasoning for machining parameters selection. IOP Conference Series: Materials Science and Engineering, 145, 042011. doi: https://doi.org/10.1088/1757-899X/145/4/042011 Hsieh, H.F & Shannon, S.E. (2005). Three Approaches To Qualitative Content Analysis. Qualitative Health Research, 15(9), 1277-1288. DOI: 10.1177/1049732305276687 Hadiati, S., Kuswanto, H., & Rosana, D. (2018). Pengembangan Performance Assesment Pada Mata Kuliah Teknik Laboratorium. Prosiding Seminar Nasional dan Call for Paper Prodi PPKn Universitas Muhammadiyah Ponorogo. Ponorogo, Mei 2018, 99-106. Hadiati, S., Kuswanto, H., & Rosana, D. (2019).The Effect of Laboratory Work Style and Reasoning with Arduino to Improve Scientific Attitude. International Journal of Instruction, 12(2), 321-336. doi: https://doi.org/10.29333/iji.2019.12221a. Halliday & Resnick (2011). Fundamentals of Physics (Edisi ke – 9). USA: John Wiley & Sons, Inc. Hamid, R., Baharom, S., Hamzah, N., Badaruzzaman, W. H. W., Rahmat, R. A. O. K., & RaihanTaha, M. (2012). Assessment of Psychomotor Domain in Materials Technology Laboratory Work. Procedia - Social and Behavioral Sciences, 56, 718–723. doi: https://doi.org/10.1016/j.sbspro.2012.09.708. Hopson, M.H, Simms, R.L & Knezek, G.A. (2001). Using a Technology-Enriched Environment to Improve Higher-Order Thinking Skills. Journal of Research on Technology in Education 34 (2), 109-119. Heijnes, D & van Joolingen, W. (2018). Stimulating Scientific Reasoning with Drawing-Based Modeling. Journal of Science Education and Technology, 27 (1), 45–56. 222 Harlen W & Qualter A. (2004). The teaching of science of primary schools. London: David Fulton Publisher. Hugerat, M & Kortam, N. (2014).Improving Higher Order Thinking Skills among freshmen by Teaching Science through Inquiry. Eurasia Journal of Mathematics, Science & Technology Education, 10 (5), 447-454. Husamah, Fatmawati, D., & Setyawan, D. (2018). OIDDE Learning Model: Improving Higher Order Thinking Skills of Biology Teacher Candidates. International Journal of Instruction, 11(2), 249-264. doi: https://doi.org/10.12973/iji.2018.11217a Hestenes, D. (1992). Modeling games in the Newtonian World. American Journal of Physics, 60(8), 732–748. https://doi.org/10.1119/1.17080 Holmes, N. G., & Wieman, C. E. (2016). Examining and contrasting the cognitive activities engaged in undergraduate research experiences and lab courses. Physical Review Physics Education Research, 12(2).doi: https://doi.org/10.1103/PhysRevPhysEducRes.12.020103. Hwang, G.J., Lai, C.L., Liang, J.C., Chu, H.C., & Tsai, C.C. (2018). A long-term experiment to investigate the relationships between high school students’ perceptions of mobile learning and peer interaction and higher-order thinking tendencies. Educational Technology Research and Development, 66(1), 75–93. doi: https://doi.org/10.1007/s11423-017-9540-3. Istiyono,E., Mardapi, D.,& Suparno. (2014). Pengembangan Tes Kemampuan Berpikir Tingkat Tinggi Fisika (PYSTHOTS) peserta didik SMA. Jurnal Penelitian dan Evaluasi Pendidikan,18 (1). Ivanjek, L., Susac, A., Planinic, M., Andrasevic, A., & Milin-Sipus, Z. (2016). Student reasoning about graphs in different contexts. Physical Review Physics Education Research, 12(1). doi: https://doi.org/10.1103/PhysRevPhysEducRes.12.010106. Jackson, J. (2016). Myths of Active Learning: Edgar Dale and the Cone of Experience. HAPS Educator, 20(2), 51–53. doi: https://doi.org/10.21692/haps.2016.007 Jacobs, G. J. (2017). Attitudes of Pre-Service Mathematics Teachers towards Modelling: A South African Inquiry. EURASIA Journal of Mathematics, Science and Technology Education, 13(1). doi: https://doi.org/10.12973/eurasia.2017.00604a. 223 Jeong, J. (2014). The Effect of a Case-Based Reasoning Instructional Model on Korean High School Students’ Awareness in Climate Change Unit. EURASIA Journal of Mathematics, Science & Technology Education, 10(5), 427–435. doi: https://doi.org/10.12973/eurasia.2014.1105a. Joyce, B., Weil, M & Calhoun, E. (2016). Models of Teaching. Yogyakarta: Pustaka Pelajar. Joyce, B. & Weil, M (2009). Models of Teaching. Yogyakarta: Pustaka Pelajar. Kaya, Z & Akdemir, S. (Eds). (2016). Learning And Teaching: Theories, Approaches and Models. Çözüm Eğitim Yayıncılık. Türkiye: Ankara. Kildan, A. O., Pektas, M., Ahi, B., & Uluman, M. (2015). Scientific Study Awareness of Science and Technology Teachers. Procedia - Social and Behavioral Sciences, 191, 2055–2061. doi: https://doi.org/10.1016/j.sbspro.2015.04.678 Kind, P., & Osborne, J. (2017). Styles of Scientific Reasoning: A Cultural Rationale for Science Education?: Styles Of Scientific Reasoning. Science Education, 101(1), 8–31. doi: https://doi.org/10.1002/sce.21251 Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educational Psychologist, 41(2), 75–86. doi: https://doi.org/10.1207/s15326985ep4102_1. Knowles, M. S., Holton, E. F., & Swanson, R. A. (2005). The adult learner: the definitive classic in adult education and human resource development (6th ed). Amsterdam Boston: Elsevier. Kosturko, L., McQuiggan,J & Sabourin, J. (2015). Mobile Learning: A Handbook for Developers, Educators, and Learners. USA: John Wiley & Sons, Inc. Kildan, A. O., Pektas, M., & Uluman., B.A.M. (2015). Scientific Study Awareness of Science and Technology Teachers. Procedia - Social and Behavioral Sciences, 2055 – 2061 Knight, R.D. (2008). Physics for scientists and engineers (edisi ke – 2). USA: Pearson Addison Wesley. Jong, J. P., Chiu, M. H., & Chung, S. L. (2015). The use of modeling-based text of ideal gas law to improve students’ modeling competencies. Science Education, 99 (5), 986–1018. 224 Kusuma, M. D., Rosidin, U., Abdurrahman, A., & Suyatna, A. (2017). The Development of Higher Order Thinking Skill (Hots) Instrument Assessment In Physics Study. IOSR Journal of Research & Method in Education (IOSRJRME), 7(1), 26–32. https://doi.org/10.9790/7388-0701052632. Khair, U, Lubis, A.J., Agustha, I., Dharmawati, Zulfin, M. (2017). Modeling And Simulation of Electrical Prevenion System Using Arduino Uno,Gsm Modem and Acs712 Current Sensor. IOP Conf. Series: Journal of Physics: Conf. Series, 930, 012049. doi :10.1088/1742-6596/930/1/012049 Krathwohl, D.R. (2002). A Revision of Bloom's Taxonomy: An Overview. Theory Into Practice, 41(4), 212-218. doi: 10.1207/s15430421tip4104_2. Kamarudin, M. Y., Yusoff, N. M. R. N., Yamat-Ahmad, H., & Ghani, K. A. (2016). Inculcation of Higher Order Thinking Skills (HOTS) in Arabic Language Teaching at Malaysian Primary Schools. Creative Education, 7, 307- 314. doi: http://dx.doi.org/10.4236/ce.2016.72030. Kolb, A.Y & Kolb, D.A. (2017). Experiential Learning Theory as a Guide for Experiential Educators in Higher Education. Journal for Engaged Educators, 1(1), 7–44. Kolb, D. A., Boyatzis, R. E., & Mainemelis, C. (1999). Experiential Learning Theory: Previous Research and New Directions. Cleveland: Case Western Reserve University. Kubínová, S., & Šlégr. J. (2015). Physics demonstrations with the Arduino board. Physics Education 50 (4), 472-464 Latha, N.A., Murthy, B.R., & Kumar, K.B. (2016). Distance Sensing with Ultrasonic Sensor and Arduino. International Journal of Advance Research, Ideas and Innovations in Technology, 2(5). Leny, E.M & Haryudo, S.I. (2019). Sistem Current Limitter Dan Monitoring Arus Serta Tegangan Menggunakan SMS Untuk Proteksi Pada Penggunaan Beban Rumah Tangga. Jurnal Teknik Elektro, 8 (1), 39-46. Liani, P.H., Harahap, A., Hidayat, R., & Hendro. (2015). Rancang Bangun Alat Deteksi Gaya Impuls pada Benda Bertumbukan Menggunakan Sensor IMU 10 DOF (Degree of Freedom) Berbasis Arduino. Prosiding Seminar Kontribusi Fisika 2015. Bandung, 16-17 Desember 2015. Lahadisi (2014). Inkuiri: Sebuah Strategi Menuju Pembelajaran Bermakna. Jurnal Al-Ta’dib, 7 (2), 85-98. 225 Louca, L. T., & Zacharia, Z. C. (2011). Modeling-based learning in science education: cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64, 471-492. doi:10.1080/00131911.2011.628748. Lacap, M. P. (2015). The Scientific Attitudes of Students Major In Science in the New Teacher Education Curriculum. Asia Pacific Journal of Multidisciplinary Research, 3(5), 9. Lakhvich, T. (2017). Modelling In Science And Education: The Way To Get The Better Results In Real Through The Use of An Idealized Understanding. Journal of Baltic Science Education, 16(1), 3. Lawson, D. E. (1959). Truth, Values, and the Scientific Attitude. The Educational Forum, 24(1), 85–93. doi: https://doi.org/10.1080/00131725909339483. Lawry, J. (2006). Modelling and Reasoning with Vague Concepts. Springer Science-Bussines Media: New York. Levy, Y & Ellis, TJ. (2011). A Guide for Novice Researchers on Experimental and Quasi-Experimental Studies in Information Systems Research. Interdisciplinary Journal of Information, Knowledge, and Management, 6,151-160. Lehrer, R & Schauble, L.(2000). Developing Model-Based Reasoning in Mathematics and Science. Journal of Applied Developmental Psychology, 21(1), 39–48. Lee, C. I. (2017). An Appropriate Prompts System Based on the Polya Method for Mathematical Problem-Solving. EURASIA Journal of Mathematics, Science and Technology Education, 13(3). doi: https://doi.org/10.12973/eurasia.2017.00649a. Lee, V., & Lo, A. (2014). From theory to practice: Teaching management using films through deductive and inductive processes. The International Journal of Management Education, 12(1), 44–54. doi: https://doi.org/10.1016/j.ijme.2013.05.001 Lindsjørn, Y., Sjøberg, D. I. K., Dingsøyr, T., Bergersen, G. R., & Dybå, T. (2016). Teamwork quality and project success in software development: A survey of agile development teams. Journal of Systems and Software, 122, 274– 286. doi: https://doi.org/10.1016/j.jss.2016.09.028 Litman, J. A., & Jimerson, T. L. (2004). The Measurement of Curiosity As a Feeling of Deprivation. Journal of Personality Assessment, 82(2), 147–157. doi: https://doi.org/10.1207/s15327752jpa8202_3 226 Madhuri, G. V., Kantamreddi, V. S. S. ., & Prakash Goteti, L. N. S. (2012). Promoting higher order thinking skills using inquiry-based learning. European Journal of Engineering Education, 37(2), 117–123. doi: https://doi.org/10.1080/03043797.2012.661701. Masganti. (2012). Perkembangan Peserta Didik. Medan: Perdana Publishing. Mahoney, J. W., & Harris-Reeves, B. (2017). The effects of collaborative testing on higher order thinking: Do the bright get brighter?. Active Learning in Higher Education, 1–13. Meltzer, D.E. (2002). The Relationship between Mathematics Preparation and Conceptual Learning gain in Physics: posibble hidden variable in diagnostic pretest score. American Journal of Physics, 70 (7). Megawati, I. (2017). Pengembangan HOTS Bloomian Menggunakan Computer Adaptive Test dalam Mata Pelajaran Fisika Kelas X SMA. Tesis, tidak diterbitkan, Universitas Negeri Yogyakarta, Yogyakarta Malone,K.L, Schunn, C.C, & Schuchardt, A.M. (2018).Improving conceptual understanding and representation skills through Excel-based modeling. Journal of Science Education and Technologi, 27 (1) 30-44. McHugh, C., & Way, J. (2018). What is Good Reasoning? Philosophy and Phenomenological Research, 96(1), 153–174. doi: https://doi.org/10.1111/phpr.12299 Mudjiyanto, B. (2018). Exploratory Research In Communication Study. Jurnal Studi Komunikasi dan Media, 22(1),65 - 74. Mickan, S., & Rodger, S. (2000). Characteristics of effective teams:a literature review. Australian Health Review, 23(3), 201. doi: https://doi.org/10.1071/AH000201. Mohammed, A.M., Al-Khateeb, B., & Ahmed Ibrahim, D. (2016). Case based Reasoning Shell Frameworkas Decision Support Tool. Indian Journal of Science and Technology, 9(42). doi: https://doi.org/10.17485/ijst/2016/v9i42/101280 Mukhopadhyay, R. (2014). Scientific attitude – some psychometric considerations. Journal of Humanities And Social Science,19(1), 98. Munawar, B & Rachman, MS. (2015). Pendidikan karakter: pendidikan menghidupkan nilai untuk pesantren, madrasah, dan sekolah. Jakarta: Paramadina. 227 Menteri Pendidikan dan Kebudayaan (2018). Peraturan Menteri Nomor 36 Tahun 2018 tentang perubahan kurikulum 2013 untuk Sekolah Menengah Atas/ Madrasah Aliyah. Nunaki, J. H., Damopolii, I., Kandowangko, N. Y., & Nusantari, E. (2019). The Effectiveness of Inquiry-based Learning to Train the Students' Metacognitive Skills Based on Gender Differences. International Journal of Instruction, 12(2), 505-516. doi: https://doi.org/10.29333/iji.2019.12232a. Nayak, S. (2015). Scientific Attitude of Under Graduate Students in Relation to Gender and Stream of Study. International Interdisciplinary Research Journal, 5(5), 318-325. Nelson, KJ., Kift, SM., Creagh, TA & Quinn, C. (2007). Teamwork protocol. Queensland : Enhancing Transition at QUT . Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. Dalam P. Carruthers, S. Stich, & M. Siegal (Ed.), The Cognitive Basis of Science (hlm. 133–153). doi: https://doi.org/10.1017/CBO9780511613517.008. Nixon, R. S., Godfrey, T. J., Mayhew, N. T., & Wiegert, C. C. (2016). Undergraduate student construction and interpretation of graphs in physics lab activities. Physical Review Physics Education Research, 12(1). doi: https://doi.org/10.1103/PhysRevPhysEducRes.12.010104. Ozturk & Guven, T. &Bulent. (2016). Evaluating Students’ Beliefs in Problem Solving Process: A Case Study. EURASIA Journal of Mathematics, Science and Technology Education, 12. doi: https://doi.org/10.12973/eurasia.2016.1208a. Ooko, P.A. (2013). Impact Of Teamwork On The Achievement Of Targets In Organisations In Kenya. A Case of Sos Children’s Villages, Eldoret. Dissertation, Unpublish, The University of Nairobi, Kenya. Ornstein, A.C & Levine, D.U. (2008). Foundations of Education. New York: Houghton Mifflin Company. Presiden Republik Indonesia. (2012). Peraturan Presiden Republik Indonesia Nomor 8 Tahun 2012 mengenai Kurikulum di perguruan tinggi mengacu pada Kerangka Kualifikasi Nasional Indonesia (KKNI). Punia, V & Bala, B.(2009). Scientific Attitude amongst the Science and Non- science Pupil-Teachers:A Comparative Analysis. Higher Education Journal, 1. 228 Panneerselvam, M & Muthamizhselvan, M. (2015). The Secondary School students in relation to Scientific Attitude and Achievement in Science.IOSR Journal of Research & Method in Education (IOSR-JRME), 5 (2), 5-08. Presiden. (2012). Peraturan Presiden RI Nomor 8, Tahun 2012, tentang Kerangka Kuaifikasi Nasional Indonesia. Palic, G., & Pirasa, N. (2012). A Study of Pre-service Teachers’ Tendency for Imprudent Behaviour and Physics Laboratory Attitudes. Procedia - Social and Behavioral Sciences, 47, 823–828. https://doi.org/10.1016/j.sbspro.2012.06.742 Pereira, N. S. A. (2016). Measuring the RC time constant with Arduino. Physics Education, 51(6), 065007. https://doi.org/10.1088/0031-9120/51/6/065007. Pitafi, A. I., & Farooq, M. (2012). Measurement ff Scientific Attitude of Secondary School Students In Pakistan. Academic Research International 2(2), 14. Piaget, J. (1952). The Origins of Intelligence In Children. New York: International Universities Press Inc. Plomp,T & Nieveen, N. (2010). An Introduction To Educational Design Research. Enschede: Netherlands Institute For Curriculum Development. Poll, S., Iverson, D. L., & Patterson-Hine, A. (2003, Agustus 7). Characterization of model-based reasoning strategies for use in IVHM architectures (P. K. Willett & T. Kirubarajan, ed.). doi: https://doi.org/10.1117/12.487219. Price, C.A & Sun Lee, H. (2013). Changes in Participants’ Scientific Attitudes and Epistemological Beliefs During an Astronomical Citizen Science Project. Journal of Research In Science Teaching, 50 (7), 773–801. Rao, D.B. (2004). Scientific Attitude, Scientific Aptitiude, and Achievement. New Delhi: Discovery Publishing House. Raj, R.G & Malliga, T. (2015). A Study on Scientific Attitude among Pre Service Teachers Research Journal of Recent Sciences, 4(1), 196–198. Ramos, J. L. S., Dolipas, B. B., & Villamor, B. B. (2013). Higher Order Thinking Skills And Academic Performance In Physics Of College Students: A Regression Analysis. International. Journal of Innovative Interdisciplinary Research, 4, 48-60. Romine, W. L, Sadler, T D & Wulff, E.P. (2017). Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and 229 Implementation of a Measure of Affect in Science and Technology (MAST). Journal of Science Education and Technology, 26 (5),534-545. Retnowati, H. (2015). Modul Analisis Statistik Lanjut. Tidak diterbitkan, PPS UNY Retnowati, H. (2017). Validitas dan Reliabilitas & Karakteristik Butir. Yogyakarta: Parama Publishing. Rowson, J., Young, J., Spencer, N., et al. (2012). The Power of Curiosity How Linking Inquisitiveness To Innovation Could Help To Address Our Energy Challenges. UK: Rsa Social Brain Centre. Richland, L. E., & Simms, N. (2015). Analogy, higher order thinking, and education: Analogy, higher order thinking, and education. Wiley Interdisciplinary Reviews: Cognitive Science, 6(2), 177–192. doi: https://doi.org/10.1002/wcs.1336 Rubini, B. (2013). Basic Natural Sciences Contribution for Scientific Attitude Development and Values of Life. International Journal of Science and Research, 2 (5) 465-468. Ryan, Q. X., Frodermann, E., Heller, K., Hsu, L., & Mason, A. (2016). Computer problem-solving coaches for introductory physics: Design and usability studies. Physical Review Physics Education Research, 12(1). doi: https://doi.org/10.1103/PhysRevPhysEducRes.12.010105. Resnick, L. (1987). Education and Learning to Think. Washington D.C: Natioanl Academy Press. Sokolowska, D., & Michelini, M. (2018). The Role of Laboratory Work in Improving Physics Teaching and Learning. Switzerland: Springer. Santoso, H. (2015). Panduan Praktis Arduino Untuk Pemula. Trenggalek: Elangsakti. Spellman, F. R. (1998). Safe Work Practices for the Environmental Laboratory Virginia Beach. Virginia: Technomic Publishing Company. Saifer, S. (2018). HOT skill: developing Higher Order Thinking in young learners Minnesota: Redleaf Press. Inquiry, the Science Teacher, and the Educator. Schwab, J.J, (1960). The School Review, 68 (2), 176-195. doi: https://doi.org/10.1086/442536. 230 Svinivki, M., & McKeachie, W. J. (2011). McKeachie’s teaching tips: Strategies, research, and theory for college and university teachers (Thirteenthth ed.). Wadsworth: Belmont. Slavich, G. M., & Zimbardo, P. G. (2012). Transformational teaching: Theoretical underpinnings, basic principles, and core methods. Educational Psychology Review, 24(4), 569-608. Southern Cross University. (2013). Teamwork Guide. Australia: Southern Cross University. Sumintono, B. (2014). Aplikasi Model Rasch untuk Penelitian Ilmu-Ilmu Sosial. Bandung: Trim Komunikata Publishing House. Santi, I.K.L & Santosa, R.H. (2016). Pengembangan Perangkat Pembelajaran Menggunakan Pendekatan Saintifik pada Materi Pokok Geometri Ruang SMP. PYTHAGORAS: Jurnal Pendidikan Matematika, 11 (1), 35-44. Suhendi, A., & Purwarno. (2018). Constructivist Learning Theory: The Contribution to Foreign Language Learning and Teaching. The 1st Annual International Conference on Language and Literature, KnE Social Sciences, 87–95. doi: 10.18502/kss.v3i4.1921. Sukardiyono & Rosana, D. (2017). Implementation of Integrated Science Instruction Assessment As An Alternative To Measure Science Process Skills And Social Attitudes. Journal of Science Education Research. Singh, V. K., Singh, A. K., & Giri, A. (2016). A study of the relationship between scientific attitude and academic achievement of rural area's intermediate college girls (science stream only). International Journal of Applied Research, 2(4), 46-49. Saavedra, A. R., & Opfer, V. D. (2012). Learning 21st-Century Skills Requires 21st-Century Teaching. Phi Delta Kappan, 94(2), 8–13. doi: https://doi.org/10.1177/003172171209400203 Serway, R.A & Jewett, J.W. (2004). Physics for scientists and engineers (Edisi Keenam). USA: Thomson Brooks/Cole. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., ... Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. doi: https://doi.org/10.1002/tea.20311 231 Siswoyo, D., Rohman, A., Sulistyono, T., Dardiri, A., Herndrowibowo, L., & Sidharto., S. (2013). Ilmu Pendidikan. Yogyakarta:UNY Press. Suparno, P. (2005). Miskonsepsi dan Perubahan Konsep Pendidikan Fisika. Jakarta: PT Grasindo. Supratman., Ryane, S., & Rustina, R. (2016). Conjecturing via Analogical Reasoning in Developing Scientific Approach in Junior High School Students. Journal of Physics: Conference Series, 693, 012017. Scott, K. M., Barbarin, O. A., & Brown, J. M. (2013). From higher order thinking to higher order behavior: Exploring the relationship between early cognitive skills and social competence in Black boys. American Journal of Orthopsychiatry, 83(2–3), 185–193. doi: https://doi.org/10.1111/ajop.12037 Sell, R., Rüütmann, T., & Seiler, S. (2014). Inductive Teaching and Learning in Engineering Pedagogy on the Example of Remote Labs. International Journal of Engineering Pedagogy (IJEP), 4(4), 12.doi: https://doi.org/10.3991/ijep.v4i4.3828 Sidenvall, J., Lithner, J., & Jäder, J. (2015). Students’ reasoning in mathematics textbook task-solving. International Journal of Mathematical Education in Science and Technology, 46(4), 533–552. doi: https://doi.org/10.1080/0020739X.2014.992986. Singmann, H., & Klauer, K. C. (2011). Deductive and inductive conditional inferences: Two modes of reasoning. Thinking & Reasoning, 17(3), 247– 281. doi: https://doi.org/10.1080/13546783.2011.572718 Stern, C., Echeverría, C., & Porta, D. (2017). Teaching Physics through Experimental Projects. Procedia IUTAM, 20, 189–194. doi: https://doi.org/10.1016/j.piutam.2017.03.026 Supratman, Ryane, S., & Rustina, R. (2016). Conjecturing via Analogical Reasoning in Developing Scientific Approach in Junior High School Students. Journal of Physics: Conference Series, 693, 012017. doi: https://doi.org/10.1088/1742-6596/693/1/012017 Slavin, R. (1980). Cooperative Learning. Review of Educational Research, 198 (50), 315-342. doi: 10.3102/00346543050002315. Tarhana, L. & Sesen, B.A. (2010). Investigation the effectiveness of laboratory works related to “acids and bases” on learning achievements and attitudes toward laboratory. Procedia Social and Behavioral Sciences, 2, 2631–2636. 232 Tieban, R., Bekker.T., Schouten, B.A.M. (2011). Curiosity and interaction: making People curious through interactive system. Proceedings of British Computer Society Conference on Human-Computer Interaction (BCSHCI), 361-370. Torabi, M. H. R. (2016). Assessing the Relationship between Teamwork Group- level Factors and Human Resource Empowerment in the Branches of Keshavarzi Bank of Tehran. Procedia - Social and Behavioral Sciences, 230, 31–38. doi: https://doi.org/10.1016/j.sbspro.2016.09.005. Tajudin,N.M & Chinnappan, M. (2016). The Link between Higher Order Thinking Skills, Representation and Concepts in Enhancing TIMSS Tasks. International Journal of Instruction, 9 (2), 199-214 Trianto (2009). Mendesain Model Pembelajaran Inovatif Progresif. Surabaya: Kencana Trowbridge, L.W & Bybee, R.W. (1986). Becoming a secondary school science Teacher. Merrill Publishing Company: Ohio. Ulviah, L. (2017). Pengaruh Penerapan Model Problem Solving Terhadap Sikap Ilmiah dan Hasil Belajar Fisika. Tesis, tidak diterbitkan, Universitas Negeri Yogyakarta, Yogyakarta. Van den Akker, J. (1999). Principles and methods of development research. In Design approaches and tools in education and training. Dordrecht: Kluwer Academic Publishers. Valeriu, D. (2015). Factors Generating of Positive Attitudes Towards Learning of the Pupils. Procedia - Social and Behavioral Sciences, 180, 554–558. https://doi.org/10.1016/j.sbspro.2015.02.159 Veloo, A., Perumal, S., & Vikneswary, R. (2013). Inquiry-based Instruction, Students’ Attitudes and Teachers’ Support Towards Science Achievement in Rural Primary Schools. Procedia - Social and Behavioral Sciences, 93, 65–69. doi: https://doi.org/10.1016/j.sbspro.2013.09.153 Vidergor, H. E. (2018). Effectiveness of the multidimensional curriculum model in developing higher-order thinking skills in elementary and secondary students. The Curriculum Journal, 29(1), 95–115. doi: https://doi.org/10.1080/09585176.2017.1318771 Vosniadou, S. (2013). Model based reasoning and the learning of counter-intuitive science concepts. Infancia y Aprendizaje, 36(1), 5–33. doi: https://doi.org/10.1174/021037013804826519 233 Voronchenko, T., Klimenko, T & Kostina, I. (2015). Learning To Live In A Global World: Project-Based Learning In Multicultural Student Groups As a Pedagogy of Tolerance Strategy. Procedia - Social and Behavioral Sciences, 191, 1489 – 1495. Watkins, J., Coffey, J.E., Redish, E.F, et al. (2012). Disciplinary authenticity: Enriching the reforms of introductory physics courses for life-science students. Physical Review Special Topics - Physics Education Research, 8, 010112. Wagner, T. 2010. Overcoming The Global Achievement Gap (online). Cambridge, Mass., Harvard University. www.aypf.org/documents/Wagner%20Slides%20%20 global%20 achievement%20gap%20brief%205-10.pdf (Accessed 16 July 2014). Waterkemper, R., Prado, M. L. do, Medina, J. L. M., & Reibnitz, K. S. (2014). Development of critical attitude in fundamentals of professional care discipline: A case study. Nurse Education Today, 34(4), 581–585. doi: https://doi.org/10.1016/j.nedt.2013.07.015 Wattimena, H. S., Suhandi, A., & Setiawan, A. (2014). Development of Physics Experiment Lectures Instrument To Improve Pre-Service Teachers Creativity In Designing Physics Practical Work High School Activities. Jurnal Pendidikan Fisika Indonesia, 10 (2), 128-139. Wilutomo, R.E.M & Yuwono. (2017). Rancang Bangun Memonitor Arus Dan Tegangan Serta Kecepatan Motor Induksi 3 Fasa Menggunakan Web Berbasis Arduino Due. Gema Teknologi, 19 (3), 19-24. Widana, W. (2017). Modul Penyusunan Soal HOTS. Jakarta: Direktorat Pembinaan SMA Direktorat Jenderal Pendidikan Dasar dan Menengah Departemen Pendidikan dan Kebudayaan. Wilcox, B. R., & Lewandowski, H. J. (2016a). Open-ended versus guided laboratory activities:Impact on students’ beliefs about experimental physics. Physical Review Physics Education Research, 12(2). doi: https://doi.org/10.1103/PhysRevPhysEducRes.12.020132 Wilcox, B. R., & Lewandowski, H. J. (2016b). Students’ epistemologies about experimental physics: Validating the Colorado Learning Attitudes about Science Survey for experimental physics. Physical Review Physics Education Research, 12(1). doi: https://doi.org/10.1103/PhysRevPhysEducRes.12.010123 234 Wilcox, B. R., & Lewandowski, H. J. (2017). Developing skills versus reinforcing concepts in physics labs: Insight from a survey of students’ beliefs about experimental physics. Physical Review Physics Education Research, 13(1). doi: https://doi.org/10.1103/PhysRevPhysEducRes.13.010108 Yeung, S. S. (2015). Conception of teaching higher order thinking: perspectives of Chinese teachers in Hong Kong. The Curriculum Journal, 26(4), 553–578. doi: https://doi.org/10.1080/09585176.2015.1053818 Young. H.D & Freedman. R.A.(1999). Fisika Universitas (Edisi Kesepuluh) Jilid 1 Alih Bahasa Oleh Pantur Silaban. Jakarta: Erlangga. Yasar, S & Anagun, S.S. (2009). Reliability and Validity Studies of the Science and Technology Course Scientific Attitude Scale. Turkish Science Education, 6 (2),44-54. Yakar, Z & Baykara, H. (2014). Inquiry-Based Laboratory Practices in a Science Teacher Training Program. Eurasia Journal of Mathematics, Science and Technology Education, 10(2):173-183. doi: 10.12973/eurasia.2014.1058a. Zachariadou, K., Yiasemides, K., & Trougkakos, N. (2012). A Low-Cost Computer-Controlled Arduino-Based Educational Laboratory System For Teaching The Fundamentals Of Photovoltaic Cells. European Journal Physics, 33, 1599–1610. Doi:10.1088/0143-0807/33/6/1599. Zeidan, A. H., & Jayosi, M. R. (2014). Science Process Skills and Attitudes toward Science among Palestinian Secondary School Students. World Journal of Education, 5(1). doi: https://doi.org/10.5430/wje.v5n1p13 Zeytun, A. S. (2017). Understanding Prospective Teachers’ Mathematical Modeling Processes in the Context of a Mathematical Modeling Course. EURASIA Journal of Mathematics, Science and Technology Education, 13(3). doi: https://doi.org/10.12973/eurasia.2017.00639a Zohar, A., & Alboher Agmon, V. (2018). Raising test scores vs. teaching higher order thinking (HOT): senior science teachers’ views on how several concurrent policies affect classroom practices. Research in Science & Technological Education, 36(2), 243–260. doi: https://doi.org/10.1080/02635143.2017.1395332. Zohar, A. (2004). Higher Order Thinking in Science Classrooms: Students' Learning and teachers' Professional Development. Dordrecht: Kluwer Academic Publishers. 235 Zwickl, B. M., Finkelstein, N., & Lewandowski, H. J. (2013). The process of transforming an advanced lab course: Goals, curriculum, and assessments. American Journal of Physics, 81(1), 63–70. doi: https://doi.org/10.1119/1.4768890 Zwickl, B. M., Finkelstein, N., & Lewandowski, H. J. (2014). Incorporating learning goals about modeling into an upper-division physics laboratory experiment. American Journal of Physics, 82(9), 876–882. doi: https://doi.org/10.1119/1.4875924 Zwickl, B. M., Hu, D., Finkelstein, N. D., & Lewandowski, H. J. (2014). Making Models of Measurement Tools: Examples from Think-Aloud Student Interviews. 2014 Physics Education Research Conference Proceedings, 291–294. doi: https://doi.org/10.1119/perc.2014.pr.069 Zwickl, B. M., Hu, D., Finkelstein, N., & Lewandowski, H. J. (2015). Model-based reasoning in the physics laboratory: Framework and initial results. Physical Review Special Topics - Physics Education Research, 11(2). doi: https://doi.org/10.1103/PhysRevSTPER.11.020113. citation: Hadiati, Soka and Kuswanto, Heru (2020) Model Kerja Laboratorium Komprehensif Berbasis Penalaran untuk Meningkatkan HOTS dan Sikap Ilmiah Mahasiswa Pendidikan Fisika. S3 thesis, Program Pascasarjana. document_url: http://eprints.uny.ac.id/70276/1/disertasi-soka%20hadiati-15703261050.pdf