eprintid: 66474 rev_number: 19 eprint_status: archive userid: 1290 dir: disk0/00/06/64/74 datestamp: 2019-10-31 03:32:06 lastmod: 2019-10-31 03:32:06 status_changed: 2019-10-31 03:32:06 type: thesis metadata_visibility: show creators_name: Wisniarti, Wisniarti creators_name: Sugiman, Sugiman title: Kemampuan Pemecahan Masalah dan Cognitive Dissonance Siswa SMA dalam Menyelesaikan Soal Matematika Non-Rutin. ispublished: pub subjects: F4 divisions: pps_math full_text_status: public keywords: cognitive dissonance, pemecahan masalah, soal non rutin. abstract: Penelitian ini bertujuan untuk mendeskripsikan kemampuan pemecahan masalah dan cognitive dissonance siswa SMA negeri di Kota Bengkulu. Penelitian ini termasuk penelitian survei dan sampel penelitian 292 siswa kelas XI IPA SMA negeri di Kota Bengkulu yang berasal dari 10 sekolah dengan tiga kategori yaitu tinggi, sedang, dan rendah. Sampel dalam penelitian ini ditentukan dengan teknik stratified proportional random sampling. Instrumen yang digunakan berupa tes masalah non-rutin yang terdiri dari lima butir soal uraian, angket cognitive dissonance siswa yang terdiri dari enam item untuk setiap soal, dan pedoman wawancara. Instrumen yang digunakan telah divalidasi oleh dua ahli dan bukti validasi konstruk dilakukan dengan uji coba instrumen. Hasil penelitian menunjukkan bahwa siswa kelas XI SMA Negeri di Kota Bengkulu memiliki kemampuan pemecahan masalah matematika non rutin yang sangat rendah dan cognitive dissonance siswa yang sedang. Estimasi rata-rata populasi kemampuan pemecahan masalah berdasarkan materi matriks sekitar 44,60 – 51,01 berada pada kriteria rendah, materi transformasi geometri sekitar 27,95 – 35,01 berada pada kriteria sangat rendah, materi barisan dan deret sekitar 33,07 – 38,43 berada pada kriteria sangat rendah. Estimasi rata-rata populasi kemampuan pemecahan masalah pada aspek menemukan hubungan antar konsep sekitar 44,71 – 49,67 berada pada kriteria sangat rendah, aspek menemukan struktur matematika sekitar 35,77 – 42,00 berada pada kriteria sangat rendah, aspek menemukan strategi matematika yang tepat sekitar 31,05 – 36,31 berada pada kriteria sangat rendah. Estimasi populasi cognitive dissonance siswa dalam menyelesaikan soal matematika non rutin secara keseluruhan sekitar 115,64 – 119,14 berada pada kriteria sedang. Estimasi populasi cognitive dissonance siswa pada materi matriks sekitar 44,57 – 46,21 berada pada kriteria sedang, materi transformasi geometri sekitar 24,13 – 25,11 berada pada kriteria tinggi dan materi barisan dan deret sekitar 46,62 – 48,14 berada pada kriteria sedang. date: 2019-08-21 date_type: published institution: Program Pascasarjana department: Pendidikan Matematika thesis_type: tesis referencetext: Alford, C. R. (2010). Cognitive Dissonance Experienced By Secondary General Education Teachers When Teaching Inclusion Classes. University of Phoenix. Allahyani, M. H. A. (2012). The Relationship between Cognitive Dissonance and Decision-Making Styles in a Sample of Female Students at the University of Umm Al Qura. Education (Chula Vista, CA), 132(3), 641–663. Amir, Z., & Risnawati. (2016). Psikologi Pembelajaran Matematika. Yogyakarta: Aswaja Pressindo. Arslan, Ç., & Altun, M. (2007). Learning To Solve Non-routine Mathematical Problems. Elementary Education Online (Vol. 6). Retrieved from http://ilkogretim-online.org.tr Bassett, S. J., & Fore, J. (2014). Cognitive Dissonance and Adult Learner Academic Outcomes: The Role of Blended/Hybrid Course Instruction, 3665756(October), 144. Bell, F. H. (1978). Teaching and learning mathematics (in secondary schools). Dubuque Iowa: W.C. Brown Co. Boaler, J. (2002). Experiencing school mathematics: Traditional and reform approaches to teaching and their impact on student learning. Studies in mathematical thinking and learning (Revised an). New Jersey: Lawrence Erlbaum Associates, Inc. Brodie, K. (2010). Teaching Mathematical Reasoning: A Challenging Task. In Teaching Mathematical Reasoning in Secondary School Classrooms (pp. 7– 22). https://doi.org/10.1007/978-0-387-09742-8_1 Budhi, W. S. (2015). Langkah Awal Menuju Olimpiade Matematika. Jakarta: Erlangga. Burns, C. P. E. (2006). Cognitive Dissonance Theory and the Induced- Compliance Paradigm : Concerns for Teaching Religious Studies. Burns, 9(1), 3–8. https://doi.org/10.1111/j.1467-9647.2006.00255.x Carkenord, D. M., & Bullington, J. (2006). Bringing Cognitive Dissonance to the Classroom. T eaching of Psychology, 20(1), 41–43. https://doi.org/10.1207/s15328023top2001_9 Carreira, S., Jones, K., Amado, N., Jacinto, H., & Nobre, S. (2016). Youngsters Solving Mathematical Problems with Technology: Their Experiences and Productions (pp. 21–53). https://doi.org/10.1007/978-3-319-24910-0_2 117 Chiu, M. S., Yeh, H. M., & Whitebread, D. (2014). Student constructs of mathematical problems: Problem types, achievement and gender. Cogent Education, 1(1). https://doi.org/10.1080/2331186X.2014.961252 Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research. SAGE Publications. https://doi.org/10.1111/j.1753- 6405.2007.00096.x DiCerbo, K. (2014). Assessment and teaching of 21st century skills. Assessment in Education: Principles, Policy & Practice, 21(4), 502–505. https://doi.org/10.1080/0969594X.2014.931836 Dorn, L. O. (2017). Learning to Use a Handbook. The Bible Translator (Vol. 46). New York: Routledge. https://doi.org/10.1177/026009439504600405 Dündar, S. (2015). Mathematics teacher-candidates’ performance in solving problems with different representation styles: The trigonometry example. Eurasia Journal of Mathematics, Science and Technology Education, 11(6), 1379–1397. https://doi.org/10.12973/eurasia.2015.1397a Elia, I., van den Heuvel-Panhuizen, M., & Kolovou, A. (2009). Exploring strategy use and strategy flexibility in non-routine problem solving by primary school high achievers in mathematics. ZDM - International Journal on Mathematics Education, 41(5), 605–618. https://doi.org/10.1007/s11858-009-0184-6 Evans, B. R. (2012). Editor’s Perspective Article: Problem Solving Abilities and Perceptions in Alternative Certification Mathematics Teachers. Jnaac, 7(2), 34–43. Garvin, A. D., & Ebel, R. L. (1980). Essentials of Educational Measurement. Educational Researcher, 9(9), 21. https://doi.org/10.2307/1175572 Gök, T., & Sýlay, I. (2010). The Effects of Problem Solving Strategies on Students’ Achievement, Attitude and Motivation. Latin-American Journal of Physics Education, 4, 7–21. Gunantara, G., Suarjana, M., & Riastini, P. N. (2014). Penerapan Model Pembelajaran Problem Based Learning untuk Meningkatkan Kemampuan Pemecahan. Jurnal Mimbar PGSD Universitas Pendidikan Ganesha, 2(1), 1– 10. Harmon-Jones, E. (2012). Cognitive Dissonance Theory. In Encyclopedia of Human Behavior (pp. 543–549). Elsevier. https://doi.org/10.1016/B978-0-12- 375000-6.00097-5 Harmon-Jones, E., Harmon-Jones, C., & Levy, N. (2015). An Action-Based Model of Cognitive-Dissonance Processes. Current Directions in Psychological Science. https://doi.org/10.1177/0963721414566449 118 Haylock, D., & Thangata, F. (2007). Key Concepts in Teaching primary mathematics. London, UK: SAGE Publications. Hogg, M. A., & Vaughan, G. M. (2005). Social psychology. Prentice Hall. İncebacak, B. B., & Ersoy, E. (2016). Problem Solving Skills of Secondary School Students. Business Review, 15(6), 275–285. https://doi.org/10.17265/1537- 1514/2016.06.002 Jarcho, J. M., Berkman, E. T., & Lieberman, M. D. (2011). The neural basis of rationalization: Cognitive dissonance reduction during decision-making. Social Cognitive and Affective Neuroscience, 6(4), 460–467. https://doi.org/10.1093/scan/nsq054 Jonassen, D. H. (2010). Learning to solve problems: A handbook for designing problem-solving learning environments. Learning to Solve Problems: A Handbook for Designing Problem-Solving Learning Environments (Vol. 9780203847). Routledge. https://doi.org/10.4324/9780203847527 Joseph, R. J., & Rangaiah, B. (2017). Gender Differences in Cognitive Dissonance. The International Journal of Indian Psychology, 4(3), 73–77. https://doi.org/10.25215/0403.128 Karatas, I., & Baki, A. (2013). The effect of learning environments based on problem solving on students’ achievements of problem solving. International Electronic Journal of Elementary Education (Vol. 5). Retrieved from https://pegem.net/dosyalar/dokuman/138591-201401081697-3.pdf Kennedy, L. M., & Johnson, A. (2007). Guiding Children ’ s Learning of Mathematics (Eleventh). Belmont, USA: Thomson Wadsworth. Knowles, M., Holton III, E., & Swanson, R. (2005). Andragogy in practice. In The Adult Learner. The Definitive Classic in Adult Education and Human Resources Development. (pp. 140–164). https://doi.org/9780750678377 ET - 6th LA - English Krejcie, R. V., & Morgan, D. W. (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement, 30(3), 607–610. https://doi.org/10.1177/001316447003000308 Kyriacou, C. (2009). Effective Teaching in Schools Theory and Practice (Third). United Kingdom: Nelson Thornes. Mcfalls, E. L., Cobb-roberts, D., & Franklin, J. H. (2001). Reducing Resistence To Diversity Through Cognitive Dissonace Instruction Implication For Teacher Education. Journal of T eacher Education, 52(2). https://doi.org/10.1177/0022487101052002007 119 Mogari, D., & Chirove, M. (2017). Comparing grades 10-12 mathematics learners’ non-routine problem solving. Eurasia Journal of Mathematics, Science and T echnology Education, 13(8), 4523–4551. https://doi.org/10.12973/eurasia.2017.00946a NCTM. (2000). Principles and Standards for School Mathematics. Reston Va: Authur. Otaibi, S. M. Al. (2012). The Relationship between Cognitive Dissonance and Decision-Making Styles in a Sample of Female Students at the University of Umm Al Qura. Education (Chula Vista, CA), 132(3), 641–663. Pantziara, M., Gagatsis, A., & Pitta-Pantazi, D. (2004). The use of diagrams in solving non routine problems. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 3, 489– 496. Peck, R., & Devore, J. L. (2012). Statistics The Exploration & Analysis of Data (Seventh). Boston: Brooks/Cole Chengage Learning. Pengelola web kemendikbud. (20198). Kementerian Pendidikan dan Kebudayaan Republik Indonesia. Retrieved August 9, 2018, from https://www.kemdikbud.go.id/main/blog/2018/04/kemendikbud-tanggapi- soal-un-matematika-yang-dianggap-sulit Pilten, P., & Yener, D. (2010). Evaluation of metacognitive knowledge of 5th grade primary school students related to non-routine mathematical problems. Procedia - Social and Behavioral Sciences, 2(2), 1332–1337. https://doi.org/10.1016/j.sbspro.2010.03.196 Pimta, S., Tayruakham, S., & Nuangchale, P. (2009). Factors Influencing Mathematic Problem-Solving Ability of Sixth Grade Students. Journal of Social Sciences, 5(4), 381–385. https://doi.org/10.3844/jssp.2009.381.385 Polya, G. (1973). How to Solve It. Princeton University Press. https://doi.org/10.2307/3609122 Posamentier, A. S., & Krulik, S. (2008). Problem solving strategies for efficient and elegant solution, grades 6-12 (2nd Ed.) (Second). The United States of America: Corwin Press. Reys, R., Lindquist, M. M., Lambdin, D. V, & Smith, N. L. (2009). Helping Children Learn Mathematics. The United States of America: John Wiley & Sons, Inc. Robertson, S. I. (2017). Problem Solving Perspectives From Cognition and Neuroscience. Journal of Crohn’s & colitis (Second). London, UK: Routledge. 120 Rowley, G. (1981). Introduction to Measurement Theory, 1979–1982. https://doi.org/10.1177/014662168100500314 Santrock, J. W. (2011). Educational Psychology 5th Edition. Educational Psychology (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004 Schunk, D. H. (2012). Learning Theories An Educational Perspective. (Sixth, Ed.), Printice Hall Inc., New Jersey (Boston, Vol. 53). Pearson. https://doi.org/10.1017/CBO9781107415324.004 Shaw, M. E., & Costanzo, P. R. (1982). Theories of social psychology. McGraw- Hill. Solso, R. L., MacLin, O. H., & MacLin, M. K. (2014). Problem Solving, reativity, anda uman Intelligences. In Cognitive Psychology (Eighth). The United States of America: Pearson. Soutar, G. N., & Sweeney, J. C. (2003). Are There Cognitive Dissonance Segments? Australian Journal of Management, 28(3), 227–249. https://doi.org/10.1177/031289620302800301 Tambychik, T., & Meerah, T. S. M. (2010). Students’ difficulties in mathematics problem-solving: What do they say? Procedia - Social and Behavioral Sciences, 8, 142–151. https://doi.org/10.1016/j.sbspro.2010.12.020 Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2013). Elementary and middle school mathematics: Teaching developmentally. Pearson. van den Heuvel-Panhuizen, M., Kolovou, A., & Robitzsch, A. (2013). Primary school students’ strategies in early algebra problem solving supported by an online game. Educational Studies in Mathematics, 84(3), 281–307. https://doi.org/10.1007/s10649-013-9483-5 Widoyoko, S. E. P. (2009). Evaluasi program pembelajaran: panduan praktis bagi pendidik dan calon pendidik. Yogyakarta: Pustaka Pelajar. https://doi.org/2013 Wijaya, A. (2012). Pendidikan Matematika Realistik: Suatu Alternatif Pendekatan Pembelajaran Matematika. Yogyakarta: Graha Ilmu. Yazgan, Y. (2015). Sixth graders and non-routine problems: Which strategies are decisive for success? Educational Research and Reviews, 10(13), 1807–1816. https://doi.org/10.5897/ERR2015.2230 citation: Wisniarti, Wisniarti and Sugiman, Sugiman (2019) Kemampuan Pemecahan Masalah dan Cognitive Dissonance Siswa SMA dalam Menyelesaikan Soal Matematika Non-Rutin. S2 thesis, Program Pascasarjana. document_url: http://eprints.uny.ac.id/66474/6/COVER.pdf document_url: http://eprints.uny.ac.id/66474/1/BAB%20I.pdf document_url: http://eprints.uny.ac.id/66474/2/BAB%20II.pdf document_url: http://eprints.uny.ac.id/66474/3/BAB%20III.pdf document_url: http://eprints.uny.ac.id/66474/4/BAB%20IV.pdf document_url: http://eprints.uny.ac.id/66474/5/BAB%20V.pdf document_url: http://eprints.uny.ac.id/66474/7/DAFTAR%20PUSTAKA.pdf document_url: http://eprints.uny.ac.id/66474/8/LAMPIRAN.pdf