

# **Electrical Machines Laboratory**





# **Contents**

|                                        | Page  |
|----------------------------------------|-------|
| Electrical Machines Laboratory         | 3     |
| Torque Meters and Brakes               | 4–8   |
| Mobile and Stationary Workplace        | 9     |
| Test Machines                          | 10–15 |
| Power Pack                             | 15    |
| Sectioned Motors                       | 16    |
| Switch Panels                          | 17    |
| Mobile Motor-Generator Unit            | 18–19 |
| Electrical Machines Training Aids      | 20–21 |
| Loads                                  | 22–23 |
| Accessories                            | 24–25 |
| Phasing Instruments                    | 26    |
| Electrical Measuring Instruments       | 27–29 |
| Measuring and Data Acquisition with PC | 30–31 |
| AC- and DC-Drives                      | 32-35 |
| Power Factor Control Unit              | 36-37 |
| Wind Mill Control Unit                 | 38-39 |
| Laboratory Flexes and Flex Stand       | 40-42 |
| Equipment Lists                        | 43-45 |
| Terco Electrical Machine Systems       | 46    |
| Experiment Manuals                     | 47    |
| Laboratory Lay-out                     | 48    |
| Electrical Power Distribution System   | 49    |
| Measuring Instrument Trainer           | 50    |
| Guarantee & Terms                      | 51    |

Terco reserves the right to make changes in the design and modifications or improvements of the products at any time without incurring any obligations.



# **Electrical Machines Laboratory**

For more than 40 years, Terco has developed and sold electrical machines for technical education, and Terco systems are today installed in hundreds of schools all over the world. Individual needs can be met through consultation and study of training programmes required. The test motors and generators have a power output of approximately 1 kW. This size of machine is such that:

- 1.Standard instruments can be used.
- 2. Safety precautions can be observed easily.
- 3.It is possible to interchange the machines without using a crane or hoist.
- 4. Typical characteristics for electrical machines.
- 5. Prices are competitive.

Thanks to the top quality and robust construction of Terco products, they are able to withstand the rough handling by young, un-experienced students.

With Terco Classic Machines it is possible to produce characteristics which are typical for machines with 6-8 kW ratings, partly because of the Terco Electrical Machines have a robust construction with more iron and copper than normal. Compare the weight of our test machines with others.

### **Service**

Most of Terco electrical machine systems have been in operation for decades and it is not very often we have to carry out service or repair. Should the need however occur, our well trained service and maintenace personnel will always be there to support you.

### **Quality Control**

All equipment is carefully checked and after approval provided with Terco's well known quality mark for our customers' safety and security.

### **NOTICE**

All products have safety sockets.

## **Training Courses**

Terco organises training courses for most of the equipment both at our headquarters or at the customer's own site. Most of our courses are especially designed to teach you how to handle the equipment in the most efficient way and are often a very good investment.

### **Documentation**


Every shipment includes comprehensive documentation including course literature, a teacher guide and a manual.





# **Torque Meters**

Terco has a wide range of Torque Measuring Systems. It is always possible to find a good solution to measure torque when testing a motor. On the following pages you will find different ways of measuring torque, power and speed for electrical machines.



## **MV 1051 Digital Torque and Power Meter**

MV 1051 is a modern torque meter based on the latest computer technology. It comprises an opto electronic transducer and an electronic control and display unit.

The transducer consists of a torsion shaft. The torsion is measured optically and is converted into torque and power by the built-in computer. The speed is also measured with a very high accuracy. The torque meter works down to a relatively low speed.

A suitable breaker / driver is the DC-Machine MV 1028. The rotating part of MV 1051 shall be mounted between MV 1028 and the test machine (see picture). When doing experiments it is recommended to use two Protective covers MV 1029 for safety reasons.

### **MV 1051 Technical Specifications**

| Tec | hn | ica | חו | ata |
|-----|----|-----|----|-----|

**Power Supply** 

Nominal torque 0-12 Nm

Max. calibrated reading, torque 15.0 Nm

Max. mechanical load, torque 25 Nm

Shaft power (max) 1999 W

Speed rating 120-3998 rpm

Brake control Manually via potentiometer on the front panel 0-195 V DC, 2 A

Remote by galvanically isolated input, 0-10 V for computer

Control
Output for plotter / computer Speed : 5 V at

2.000 rpm

Torque: 5 V at 10 Nm Shaft power: 5 V at

2 kW

Power ≤ 2 % Speed ≤ 1 % 220-240 V, 1-phase

50-60 Hz

## **Dimensions**

Transducer 345 x 300 x 230 mm

Length including shaft

couplings 345 mm
Shaft height above test bed 162 mm

Control Unit 250 x 340 x 150 mm

### Weight

Transducer 6 kg Control Unit 5 kg

Other specifications for torque and calibrated reading available on request.





## **Electric Torque Meter System, Analogue Dial**

A DC pendulum machine is freely suspended on plumber blocks and placed on an aluminium foundation plate. The front panel is fitted with the necessary meters, controls and connection terminals. The torque is read on an analogue dial. The DC-machine has interpoles.

This analogue torque measuring system is pedagogical and easy to handle. It is a reliable product which has been sold to many technical schools worldwide.

## MV 1036-225 Electric Torque Meter System MV 1036-226 Electric Torque Meter System

Speed 0-4000 rpm As MV 1036-225 but following ratings. Ammeter 0-1 A (Field) Generator 2.2 kW 1800 rpm Ammeter 0-15 A (Arm.) Motor 2.0 kW 1700 rpm Potentiometer **Shunt Control** Excitation 220 V 0.8 A Grad.  $0 - \pm 25 \text{ Nm}$ Torque 220 V 12 A Armature Scale diam. 390 mm Weight 90 kg

Scale diam.

390 mm

4 mm banana terminals

Generator

Motor

Excitation

Armature

390 mm

4 mm banana terminals

2.2 kW 1500 rpm

2.0 kW 1400 rpm

2.0 kW 1400 rpm

220 V 0.8 A

Properties of tests on electrical machines with 60 Hz ratings.

Dim. 600 x 540 x 960 mm

Weight 90 kg

DC Machine MV 1036-225 is designed for tests on electrical machines with 50 Hz ratings.

## **MV 1026-225 Electric Torque Meter System**

As MV 1036-225, but the drive motor has a double ended shaft, enabling to couple two machines at the same time for experiments such as Ward-Leonard system, cascade, etc. Designed for tests on electrical machines with 50 Hz ratings.

## **MV 1026-226 Electric Torque Meter System**

As MV 1036-226 except that the drive motor has a double ended drive shaft, making it possible to couple two machines at the same time for experiments such as Ward-Leonard system, cascade, etc. Designed for tests on electrical machines with 60 Hz ratings.



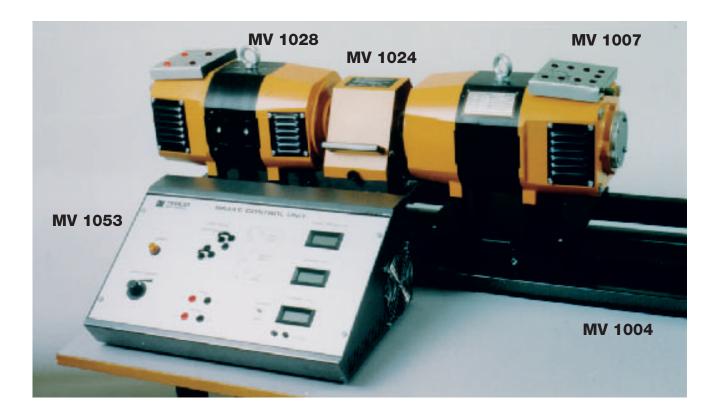


## **Eddy Current Brake System**

An electro-magnet having variable excitation, reacts on a rotating disc, thus producing a variable breaking effect on

It is designed for assembly on machine bed MV 1004 for coupling to the whole range of motors. Torque, power and speed are read off digital displays. The unit has outputs for connection to XY and XT recorders. It must be observed that Eddy Current Brake systems can only be used for tests on motors, not on generators.

## MV 1045-235 Eddy Current Brake System


### **General Data**

| Brake Unit                           |                                        | Read out Unit                      |                                         |
|--------------------------------------|----------------------------------------|------------------------------------|-----------------------------------------|
| Torque                               | Nom. 13.2 Nm, 2650 rpm<br>Max. : 30 Nm | Torque<br>Power                    | 0-20 Nm - 3 digits<br>0-6 kW - 3 digits |
| Power<br>Speed                       | 3.7 kW<br>Max : 4000 rpm               | Speed                              | 0-4000 rpm - 4 digits                   |
| Shaft height<br>Dimensions<br>Weight | 162 mm<br>360 x 300 x 250 mm<br>55 kg  | Outputs Rpm Torque / power Control | 4-20 mA<br>4-20 mA<br>4-20 mA           |
|                                      |                                        | Supply voltage                     | 220-240 V, 1-phase,<br>50-60 Hz         |
|                                      |                                        | Dimensions<br>Weight               | 510 x 170 x 300 mm<br>4 kg              |

Other input voltages available on request.

# **MV 1045-116 Eddy Current Brake System** As MV 1045-235 but for the supply voltage 110 V 60 Hz.





### **MV 1053 Brake Control Unit**

The MV 1053 Brake Control Unit is designed to operate with one Terco DC-Machine + one Terco DC-Tacho Generator (e.g. MV 1028 + MV 1024). The Control Unit is trimmed against the chosen machine and tacho generator to make it possible to calculate the air gap torque in the DC-machine. With a tacho signal also speed and shaft power is calculated. The result is displayed by three LCD-instruments.

Braking force is controlled by a potentiometer on the front.

To facilitate full braking force at high, medium, low and close to standstill speeds, the braking resistor can be configurated by two jumpers placed in the front plate. The braking resistors are cooled by a built-in fan.

MV 1053 can also be trimmed to already existing DC-machine and tachometer generator.

### **Technical specifications:**

Factory trimmings against specified DC-machine and tacho

Braking Power max 1500 W 30 min.

Speed indication 0-4000 rpm
Torque indication 0-12.0 Nm
Power indication 0-2000 W
Accuracy speed 0.5 %

Accuracy Nm and W 5 % or better

Machine connections four 4 mm safety terminals

Tacho connections two 4 mm terminals

Size H x W x D (approx.) 210 x 480 x 300 mm (inclined front) Power supply 220-240 V, 1-phase, 50-60 Hz

Weight approx. 9 kg

Other input voltages available on request.



## **DC-Brake / Drive Machine**

## **Machine Test System**

A DC-machine is used together with test machines, e. g. a synchronous machine as below in order to study characteristics. The DC-machine is built up on a stand on which different test machines can be mounted quickly and simply. The machine can be connected either as brake generator or driving motor depending on the object to be tested. Suitable connections are done on the terminal block, situated on the instrument panel, integrated with the machine. The machines have an aluminium foundation, coupling, eyebolt and terminal block. Guides and plastic rails under the foundation ensure that each machine is aligned accurately and slides easily on the stand.

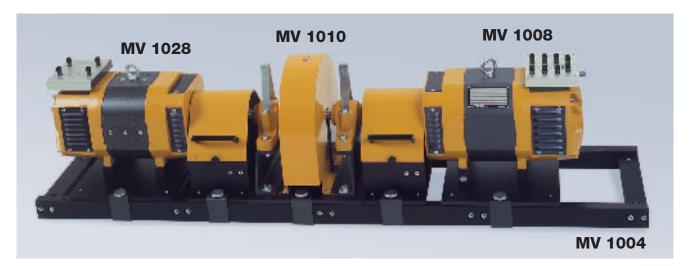
### MV 1028 DC Machine

Complete with interpoles. This machine is used in test machine sets such as motors or generators, mounted on a 10 mm thick anodized aluminium plate to be placed on the machine bed MV 1004.

| General Data      | MV 1028-225               | MV 1028-226     |
|-------------------|---------------------------|-----------------|
| Generator         | 2.2 kW 1500 rpm           | 2.2 kW 1800 rpm |
| Motor             | 2.0 kW 1400 rpm           | 2.0 kW 1700 rpm |
| Excitation        | 220 V 0.8 A               | 220 V 0.8 A     |
| Armature          | 220 V 12 A                | 220 V 12 A      |
| Moment of inertia | $J = 0.012 \text{ kgm}^2$ |                 |
|                   |                           |                 |

Dimensions 465 x 310 x 310 mm Shaft height 162 mm

Weight 50 kg


MV 1028-225 is designed for tests on AC motors with 50 Hz ratings.

MV 1028-226 is designed for tests on AC motors with 60 Hz ratings.

## MV 1034-225 and MV 1034-226 DC-Machine

Same as MV 1028 but with through shaft with two couplings. For central mounting on the machine bed.





## **Motor-Generator Set-Up with Flywheel**

A DC-machine MV 1028 is coupled via a flywheel MV 1010 to a synchronous machine MV 1008.

Either machine can act as a motor. The above motor-generator is set to determine moment of inertia and losses in a synchronous machine with large moment of inertia, symbolized by a flywheel.

Of course it is also possible to add the Torque Measuring unit MV 1051 or measure the torque with the Brake Control Unit MV 1053.



# **Mobile and Stationary Workplace**

### **MV 1003 Mobile Test Bench**

For mobile use, the torque meter or brake system and test machines with bed are placed on a mobile bench having a folding leaf and four wheels, of which 2 can be locked.

Dimensions of the folding leaf  $1490 \times 400 \times 30 \text{ mm}$  Dimensions  $1500 \times 600 \times 840 \text{ mm}$  Weight 55 kg



## **MV 1700 Stationary Laboratory Bench**

For stationary use, the torque meter or brake system with bed and testmachines are placed at the rear of the stable laboratory bench.

The front of the bench is used to connect equipment and instruments.

See also page 3.

 Dimensions
 2000 x 800 x 850 mm

 Weight
 30 kg



## **MV 1004 Machine Bed**

This strong, stable machine bed of anodized aluminium bars has rubber dampers on the underside to prevent transmission of vibration to the base. The torque meter unit is mounted on MV 1004 along with the test machines. Special clamps ensure a quick and secure fixing of the machines to the bed. These clamps are delivered with the electrical machines.

Dimensions 1500 x 300 x 65 mm

Weight 15 kg





# **Test Machines**

The characteristics and data of Terco electrical machines are similar to those of larger machines.

The Terco test machines have a robust construction with more iron and copper then normal to enable overloading. Approximately 20 % overload is possible at the most for 10 minutes without damaging the machines.

Please pay attention to the weight of Terco machines in comparison with other suppliers machines.

The test machines have a foundation providing accurate alignment laterally and an accurate shaft height of 162 mm. Guides and plastic rails below the foundation simplify alignment and enable easy sliding into position on the machine bed. Special clamps are used to secure the machines to the machine bed. Connection is made via 4 mm safety terminal sockets mounted on a terminal panel showing the internal connections of the machine. Other voltages than those shown can be arranged on request.

### MV 1006 DC-Machine

The machine has a shunt and a series winding and can be connected as shunt motor, series motor, compound motor, shunt generator, series generator or compound generator.

MV 1006 has also commutating poles (interpoles) which improve the characteristics of the machine. The machine is mounted on a 10 mm thick anodized aluminium plate to be placed on the stand.

Suitable shunt rheostat: MV 1905.

| <b>General Data</b> | MV 1006-225     | MV 1006-226     |
|---------------------|-----------------|-----------------|
| Generator           | 1.2 kW 1400 rpm | 1.2 kW 1700 rpm |
| Shunt motor         | 1.0 kW 1400 rpm | 1.0 kW 1700 rpm |
| Series motor        | 1.0 kW 1150 rpm | 1.0 kW 1400 rpm |
| Rotor               | 220 V 5.5 A     | 220 V 5.5 A     |
| Excitation          | 220 V 0.55 A    | 220 V 0.55 A    |
|                     |                 |                 |

The series winding has an extra terminal at 2/3 of the winding.

Moment of inertia  $J = 0.012 \text{ kgm}^2 \text{ (approx.)}$ Dimensions  $465 \times 300 \times 310 \text{ mm}$ Shaft height 162 mm

Weight 45 kg



## **MV 1007-405 Induction Motor Slip Ring**

The machine is a 3-phase slip-ring motor with means to connect a rotor starter to be used for starting. Terminals on anodized front panel with symbols and electrical data.

| General Data      | 50 Hz                                       | 60 Hz            |
|-------------------|---------------------------------------------|------------------|
| Power             | 1.1 kW,                                     | 1.1 kW,          |
| Speed             | 1440 rpm, 50 Hz                             | 1680 rpm, 60 Hz  |
| Star connection   | 380-415 V, 3.2 A                            | 380-415 V, 3.2 A |
| Delta connection  | 220-240 V, 5.5 A                            | 220-240 V, 5.5 V |
| Secondary         | 260 V, 3.0 A                                | 260 V, 3.0 A     |
| Moment of inertia | $J = 0.012 \text{ kgm}^2 \text{ (approx.)}$ | .)               |
| Dimensions        | 400 x 300 x 350 mm,                         |                  |
|                   | Shaft height 162 mm                         |                  |
| Weight:           | 42 kg                                       |                  |



As MV 1007-405 but for 380-415 V 3-phase, Delta, 50-60 Hz





## **MV 1008 Synchronous Machine**

The machine has a DC excited cylindrical rotor, operating on voltages up to 220 V DC. The advantages rising from this type of machine are measurements and characteristics corresponding to those of larger machines and the excitation voltage is readily available in most laboratories. An additional damping winding will counteract and also facilitate return to synchronism if the rotor falls out of phase.

The damping winding also allows the motor to be started as an asynchronous motor before energizing the field.

Suitable excitation rheostat: MV 1905.



| <b>General Data</b> | MV 1008-235                                | MV 1008-236     | MV 1008-405     | MV 1008-406                                             |
|---------------------|--------------------------------------------|-----------------|-----------------|---------------------------------------------------------|
| Synch. Gen.         | 1.2 kVA x 0.8                              | 1.2 kVA x 0.8   | 1.2 kVA x 0.8   | 1.2 kVA x 0.8                                           |
| Synch. Motor        | 1.0 kW 1500 rpm                            | 1.0 kW 1800 rpm | 1.0 kW 1500 rpm | 1.0 kW 1800 rpm                                         |
| Star conn.          | 220-240 V 3.5 A                            | 220-240 V 3.5 A | 380-415 V 2.0 A | 380-415 V 2.0 A                                         |
| Delta conn.         | 127-140 V 6.1 A                            | 127-140 V 6.1 A | 220-240 V 3.5 A | 220-240 V 3.5 A                                         |
| Excitation DC       | 220 V 1.4 A                                | 220 V 1.4 A     | 220 V 1.4 A     | 220 V 1.4 A                                             |
| Moment of inertia   | J = 0.012 kgm <sup>2</sup> (appro          | x.)             |                 |                                                         |
| Dimensions          | 465 x 300 x 310 mm,<br>Shaft height 162 mm |                 | 0               | or tests on 50 Hz networks. or tests on 60 Hz networks. |
| Weight              | 39 kg                                      | 1000 200 1      |                 | . issue s se i iz notwortor                             |

## **MV 1009-405 Induction Motor Squirrel Cage**

A 3-phase squirrel cage motor is mounted on a 10 mm thick anodized aluminium plate to be placed on the machine bed MV 1004.

| General Data                            | 50 Hz                                                   | 60 Hz                                                   |
|-----------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| 4 pole machine<br>Star (Y)<br>Delta (D) | 1.1 kW 1400 rpm<br>380-415 V, 3.0 A<br>220-240 V, 5.2 A | 1.1 kW 1700 rpm<br>380-415 V, 3.0 A<br>220-240 V, 5.2 A |
| Moment of inertia                       | J = 0.0023 kgm <sup>2</sup> (appro                      | x.)                                                     |
| Dimensions                              | 355 x 300 x 310 mm<br>Shaft height 162 mm               |                                                         |
| Weight                                  | 19 kg                                                   |                                                         |

## **MV 1009-695 Induction Motor Squirrel Cage**

As MV 1009-405 but for 380-415 V 3-phase Delta. With this machine it is possible to do star/delta starts for 380-415 V lab voltage.

## **MV 1016-405 Induction Motor Squirrel Cage**

When doing experiments on Cascade set it is best to use one 4 pole (MV 1009) and one 6 pole induction motor (MV 1016). Same design as MV 1009-405 above.

| General Data                                          | 50 Hz                                                | 60 Hz                                                 |
|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| 6 pole machine<br>Star connection<br>Delta connection | 1.0 kW 900 rpm<br>380-415 V 3.0 A<br>220-240 V 5.2 A | 1.0 kW 1100 rpm<br>380-415 V 3.0 A<br>220-240 V 5.2 A |
| Dimensions Weight                                     | 355 x 300 x 310 mm<br>Shaft height 162 mm<br>19 kg   |                                                       |







## MV 1017-235 Induction Motor Dahlander Motor

The winding of the Dahlander motor is arranged in a way, that by connecting in different formations 2 speeds are available. Switching can be performed using a cam switch or using contactors.

| <b>General Data</b> | 50 Hz               | 60 Hz            |
|---------------------|---------------------|------------------|
| Power               | 0.9 / 1.3 kW        | 0.9 / 1.3 kW     |
| Speed               | 1400 / 2800 rpm     | 1680 / 3310 rpm  |
| Voltage             | D / YY 220-240 V    | D / YY 220-240 V |
|                     | 3-phase             | 3-phase          |
| Current             | 5.4 / 4.7 A         | 5.4 / 4.7 A      |
| Dimensions          | 355 x 300 x 340 mm  |                  |
|                     | Shaft height 162 mm |                  |
| Weight              | 17 kg               |                  |
|                     |                     |                  |



## **MV 1017-405 Induction Motor Dahlander Motor**

As MV 1017-235 but for 380-415 V 3-phase

## **MV 1018 Universal Motor**

This is the most commonly used motor in domestic appliances. It can be run on DC or AC 1-phase. The rotor is connected in series with the field winding and supplied via the commutator and brushes.

| <b>General Data</b> |                     |
|---------------------|---------------------|
| Power               | 0.75 kW             |
| Speed               | 3000 rpm at 50 Hz   |
|                     | 3600 rpm at 60 Hz   |
| Voltage             | 220-240 V AC / DC   |
| Current             | 7.5 A AC            |
|                     | 4.2 A DC            |
| Dimensions          | 300 x 300 x 310 mm  |
|                     | Shaft height 162 mm |
| Weight              | 21 kg               |



## **MV 1019 Induction Motor Split Phase Motor**

A single phase motor having 2 windings. The start winding is disconnected by means of a centrifugal switch when the motor has reached a fraction of full speed.

| <b>General Data</b> | 50 Hz               | 60 Hz     |
|---------------------|---------------------|-----------|
| Power               | 0.25 kW             | 0.21 kW   |
| Speed               | 1425 rpm            | 1725 rpm  |
| Voltage             | 220-240 V           | 220-240 V |
|                     | 1-phase             | 1-phase   |
| Current             | 3.1 A               | 3.1 A     |
| Dimensions          | 280 x 300 x 340 mm  |           |
|                     | Shaft height 162 mm |           |
| Weight              | 21 kg               |           |





## **MV 1020 Induction Motor Capacitor Start**

The capacitor assisted starting winding is disconnected from the circuit when the motor has built up speed, by means of a relay.

| <b>General Data</b> | 50 Hz               | 60 Hz     |
|---------------------|---------------------|-----------|
| Power               | 0.75 kW             | 0.75 kW   |
| Speed               | 1425 rpm            | 1710 rpm  |
| Voltage             | 220-240 V           | 220-240 V |
|                     | 1-phase             | 1-phase   |
| Current             | 6.8 A               | 6.8 A     |
| Capacitors          | 310 uF              | 310 uF    |
| Dimensions          | 350 x 300 x 350 mm  |           |
|                     | Shaft height 162 mm |           |
| Weight              | 24 kg               |           |



## MV 1037 Induction Motor Cap. Start and Run

To obtain a higher starting torque, the starting winding has a capacitor connected in series. Continuous rating of start winding allows the circuit to remain the same during starting and running.

| General Data | 50 Hz                                     | 60 Hz            |
|--------------|-------------------------------------------|------------------|
| Power        | 0.75 kW                                   | 0.75 kW          |
| Speed        | 1430 rpm                                  | 1715 rpm         |
| Voltage      | 220-240 V                                 | 220-240 V        |
|              | 1-phase                                   | 1-phase          |
| Current      | 5.4 A                                     | 5.4 A            |
| Capacitors   | 25uF and 100 uF                           | 25 uF and 100 uF |
| Dimensions   | 320 x 300 x 350 mm<br>Shaft height 162 mm |                  |
| Weight       | 20 kg                                     |                  |



## **MV 1015-405 Reluctance Motor**

A reluctance motor starts as an induction motor, but operates normally as synchronous motor. A three-phase reluctance motor is self-starting when started as an induction motor. After starting, in order to pull it into step and then to run it as a synchronous motor, the reluctance motor has low rotor resistance. Some rotor teeth are removed to form a typical construction of a four-pole rotor.

| General Data     | 50 Hz                                     | 60 Hz            |
|------------------|-------------------------------------------|------------------|
| Power            | 0.9 kW                                    | 0.9 kW           |
| Speed            | 1500 rpm                                  | 1800 rpm         |
| Star connection  | 380-415 V, 3.7 A                          | 380-415 V, 3.7 A |
| Delta Connection | 220-240 V, 6.4 A                          | 220-240 V, 6.4 A |
| Dimensions       | 360 x 300 x 310 mm<br>Shaft height 162 mm |                  |



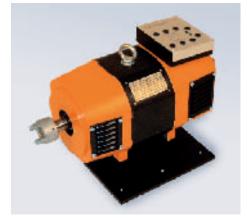
### MV 1015-695 Reluctance Motor

Weight

Same as MV 1015-405 but for 380-415 V, 3-phase, Delta.

25 kg




## **MV 1027 Synchronous Machine**

The machine has a DC excited rotor with salient poles, operating on voltages up to 220 V DC.

The advantages rising from this type of machine are measurements and characteristics corresponding to those of larger machines and the excitation voltage is readily available in most laboratories. An additional damping winding will counteract oscillations and also facilitate return to synchronism if the rotor falls out of phase.

The damping winding also allows the motor to be started as an asynchronous motor before energizing the field.

Suitable excitation rheostat: MV 1905.



| <b>General Data</b>                                           | MV 1027-235                                                                           | MV 1027-236                                                                           | MV 1027-405                                                                           | MV 1027-406                                                                           |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Synch. Gen. Synch. Motor Star conn. Delta conn. Excitation DC | 1.2 kVA x 0.8<br>1.0 kW 1500 rpm<br>220-240 V 3.5 A<br>127-140 V 6.1 A<br>220 V 1.4 A | 1.2 kVA x 0.8<br>1.0 kW 1800 rpm<br>220-240 V 3.5 A<br>127-140 V 6.1 A<br>220 V 1.4 A | 1.2 kVA x 0.8<br>1.0 kW 1500 rpm<br>380-415 V 2.0 A<br>220-240 V 3.5 A<br>220 V 1.4 A | 1.2 kVA x 0.8<br>1.0 kW 1800 rpm<br>380-415 V 2.0 A<br>220-240 V 3.5 A<br>220 V 1.4 A |
| Moment of inertia                                             | $J = 0.012 \text{ kgm}^2 \text{ (approx}$                                             | x.)                                                                                   |                                                                                       |                                                                                       |
| Dimensions Weight                                             | 465 x 300 x 310 mm,<br>Shaft height 162 mm<br>39 kg                                   |                                                                                       |                                                                                       | or tests on 50 Hz networks.<br>or tests on 60 Hz networks.                            |

## **MV 1023 Repulsion Induction Motor**

This motor starts as a repulsion motor. When the motor reaches full speed a shorting ring converts the motor to a normal induction motor.

The starting qualities of a repulsion and running qualities of a squirrel cage are thus obtained.

| General Data                         | 50 Hz                                              | 60 Hz                                    |
|--------------------------------------|----------------------------------------------------|------------------------------------------|
| Power<br>Speed<br>Voltage<br>Current | 0.75 kW<br>1425 rpm<br>220-240 V 1-phase<br>7.3 A  | 0.63 kW<br>1725 rpm<br>220-240 V 1-phase |
| Dimensions Weight                    | 350 x 300 x 340 mm<br>Shaft height 162 mm<br>40 kg |                                          |

## MV 1030-235 Induction Motor 2 Speed 2 Windings

This motor unlike MV 1017 which has only one set of windings, has 2 separate sets of windings for high and low speed.

| <b>General Data</b> | 50 Hz                                     | 60 Hz           |
|---------------------|-------------------------------------------|-----------------|
| Power               | 0.8 / 1.0 kW                              | 0.8 / 1.0kW     |
| Speed               | 930 / 1440 rpm                            | 1120 / 1730 rpm |
| Voltage             | 220-240 V                                 | 220-240 V       |
|                     | 3-phase                                   | 3-phase         |
| Current             | 4.7 / 6.0 A                               | 4.7 / 6.0 A     |
| Dimensions          | 450 x 300 x 340 mm<br>Shaft height 162 mm |                 |
| Weight              | 24 kg                                     |                 |

## MV 1030-405 Induction Motor 2 Speed 2 Windings

As MV 1030-235 but for 380-415 V, 3-phase.



### **MV 1031 Induction Motor Thermistor Protected**

This squirrel cage motor has a thermistor built into the windings for temperature control of the motor.

Thermal relay MV 1032 is used in conjunction with this motor.

| General Data | 50 Hz                                     | 60 Hz                        |
|--------------|-------------------------------------------|------------------------------|
| Power        | 1.1 kW                                    | 1.1 kW                       |
| Speed        | 1400 rpm                                  | 1700 rpm                     |
| Voltage      | 380-415/220-240 V<br>3-phase              | 380-415/220-240 V<br>3-phase |
| Current      | 3.0 / 5.2 A                               | 3.0 / 5.2 A                  |
| Dimensions   | 340 x 300 x 310 mm<br>Shaft height 162 mm |                              |
| Weight       | 22 kg                                     |                              |



This is a control unit against overheating of motor MV 1031. Most electrical machines withstand today 140°C or more. However, it takes a long time to reach this temperature and the lab time is limited in the laboratory. Therefore we have chosen a cut off temperature at 60°C for the experiments.

**Dimensions** 130 x 245 x 95 mm

Weiaht 1 ka



This power supply unit is especially adapted for laboratory experiments on electric machines and power systems. It can be used where variable or fixed AC or DC is required and is particularly suited to the laboratory experiments with Terco's torque meters and test machines. It is designed to slide under the lab table so that controls and connections are in a comfortable working position. The contactor for variable voltages has a safety limit switch which eliminates switching on high voltages by mistake, thus protecting students and equipment especially when working on electrical machines.

All outputs are fused by MCB's and have load switches. The Power Pack has also Earth Leakages Circuit Breaker (ELCB).

### **General Data**

MV 1300-235 Supply voltage 220-240 / 127-140 V 50 / 60 Hz 3-ph. MV 1300-405 Supply voltage 380-400 / 220-230 V 50 / 60 Hz 3-ph. MV 1300-415 Supply voltage 415 / 240 V 50 / 60 Hz 3-ph.

DC fixed Output voltage 220 V 3.5 A DC variable 0-220 V 16 A AC fixed AC variable Standard Fixed AC 230 V 10 A

**Dimensions** 660 x 435 x 790 mm

Weight 103 kg

# 230/133 V 10 A 3-ph 3 x 0-230 V 10 A 3-ph

## **MV 1304 Power Pack**

As MV 1302 but with the following data DC fixed Output voltage 220 V 3.5 A

DC variable 0-220 V 16 A AC fixed 415 / 240 V 10 A 3-ph AC variable 3 x 0-415 V 10 A 3-ph

415 / 240 V 50-60 Hz 3-ph Supply voltage







## MV 1302 Power Pack

As MV 1300-405 but with the following data Output voltage DC fixed 220 V 3.5 A DC variable 0-220 V 16 A AC fixed 400 / 230 V 10 A 3-ph AC variable 3 x 0-400 V 8 A 3-ph

380-400 / 220-230 V 50 / 60 Hz 3-ph Supply voltage



# **Sectioned Motors and Transformer**

The machines are sectioned about 90° allowing all the main components to be demonstrated clearly and in an educational way.

Please note: It is not possible to do any practical experiments with the machines and transformer.

### MV 1006-C DC Machine

This machine is cut-away to show commutator, brushes, rotor, stator, windings, ball-bearings.

Rated power 1.0 kW

Dimensions 465 x 300 x 310 mm

Shaft height 162 mm

Weight 40 kg



This machine is cut-away to show slip-rings, brushes, rotor, stator, windings, poles, ball-bearings etc.

Rated power 1.0 kW

Dimensions 465 x 300 x 310 mm

Shaft height 162 mm Weight 35 kg

## **MV 1007-C Induction Motor Slip-Ring**

This motor is cut-away to show slip-rings, brushes, rotor, stator, windings, poles, fan, ball-bearings, etc.

Rated power 1.1 kW

Dimensions 440 x 300 x 350 mm

Shaft height 162 mm Weight 37 kg

## **MV 1009-C Induction Motor Squirrel Cage**

This motor is cut-away to show rotor, stator, windings, poles, fan, ball-bearings, etc.

Rated power 1.1 kW

Dimensions 355 x 300 x 310 mm

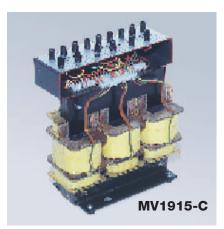
Shaft height 162 mm Weight 15 kg

## **MV 1915-C Three-phase Transformer**

This transformer is cut-away to show the windings, coils, terminals, insulation, iron core etc.

Rated power 2 kVA

Dimensions 300 x 190 x 345 mm


Weight 27 kg

Other electrical machines and transformers than those above can be cutaway on request.











# **Switch Panels**

### **MV 1500 Load Switch**

Three-pole, 16 A, 250 V- DC / 440 V-AC, switch in metal case.

Front panel showing symbols and technical data.

Marking of terminals input R, S, T

output U, V, W

Dimensions 95 x 200 x 80 mm

Weight 1 kg

### **MV 1501 Selector Switch**

Three-pole, 2-way, 16 A, 250 V-DC / 440 V-AC switch in metal case. Front panel showing symbols and technical data.

Marking of terminals input R, S, T.

output 1 R1, S1, T1 output 2 R2, S2, T2

Dimensions 95 x 200 x 80 mm

Weight 1 kg

## **MV 1502 Reversing Switch**

for 3-phase machine, 16 A, 500 V, in metal case. Front panel showing symbols and technical data.

Marking of terminals input R, S, T

output U, V, W

Dimensions 95 x 200 x 80 mm

Weight 1 kg

### MV 1503 Star / Delta Switch

for 3-phase machine, 16 A, 500 V, in metal case. Front panel showing symbols and technical data.

Marking of terminals input R, S, T

output 1 U1, V1, W1 output 2 U2, V2, W2

Dimensions 95 x 200 x 80 mm

Weight 1 kg

## **MV 1505 Dahlander Switch**

for Dahlander motor MV 1017, 16 A, 400 V, in metal case. Front panel showing symbols and technical data.

Marking of terminals input R, S, T

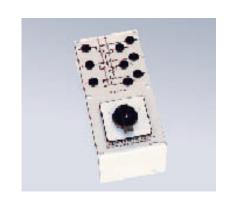
output 1 Ua, Va, Wa output 2 Ub, Vb, Wb

Dimensions 95 x 200 x 80 mm

Weight 1 kg

## **MV 1504 Terminal Board**

Four-pole terminal board with six terminals and two jacks per pole, (phase). The case is of metal.


Poles marked R, S, T, O.

Data 16 A, 400 V AC/DC Dimensions 190 x 130 x 30 mm

Weight 0.8 kg











## **MV 1305 Mobile Motor / Generator Unit**



## MV 1305 Mobile Motor / Generator Unit

A standard laboratory for power transmission normally consists of one or two generators, which are connected to one or more transmission links which finally reach transformers, distribution units and loads. This configuration may look like the very left line in figure 1.

However, a realistic network most likely looks like the complete network of figure 1. For example, here can be seen turbine/generators in parallel on the same busbar, a synchronous machine used as a synchronous compensator in the middle of a line, a single generator unit and a heavy group of generators.

Energy transfer, load shedding, static and dynamic stability at disturbances as well as sophisticated protection schemes can be studied under realistic forms. Not to forget compensation possibilities.

Power- and current- paths in grid networks are complicated. The TERCO system will give understanding for this problem. The wide range flexibility will be given by the mobile generator station / synchronous alternator (compensator) MV 1305.

Two sets of MV 1305 can operate as described or work in parallel. In this case mechanical and electrical parameters might be changed by using e.g. flywheel (MV 1010) and different electrical connections.

## Modes of Operation

- A. Control of active power (frequency): DC-machine ("turbine") + synchronous machine (generator) in closed loop connection regarding frequency.
- B. Control of active power (frequency) and reactive power (voltage): Two closed loops regarding frequency and voltage.
- C. Synchronous compensating: DC-machine ("turbine") idling, electrically disconnected or mechanically disconnected, synchronous machine in closed loop connection for voltage (=reactive power) control.



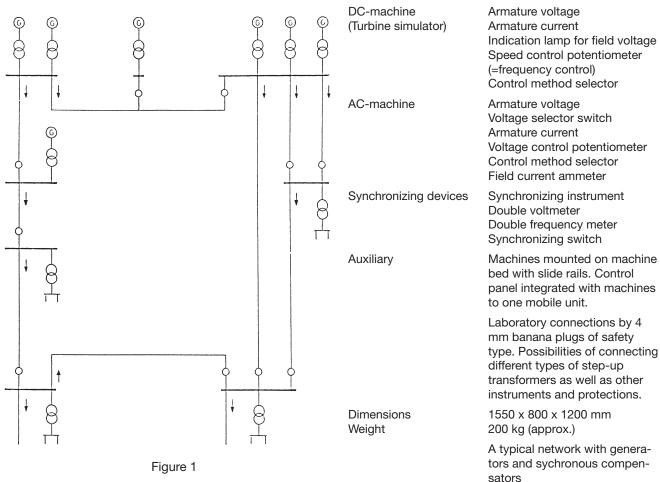
| <b>Technical Specification</b> |                                                                     | MV 1305-405                                                     | MV 1305-235                                                     |
|--------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| Power Supply                   | Voltage                                                             | 380-415 V AC 3-ph                                               | 380-415 V AC 3-ph                                               |
|                                | Frequency                                                           | 50-60 Hz                                                        | 50-60 Hz                                                        |
|                                | Max current                                                         | 16 A                                                            | 16 A                                                            |
| Turbine/DC-machine             | Armature Volt Field Volt Armature current Field current Power Speed | 0-240 V DC<br>190 V DC<br>12 A<br>0.8 A<br>2.0 kW<br>0-1800 rpm | 0-240 V DC<br>190 V DC<br>12 A<br>0.8 A<br>2.0 kW<br>0-1800 rpm |
| Synchronous generator          | Armature volt                                                       | 0-240 / 415 V AC                                                | 0-140 / 240 V AC                                                |
|                                | Power                                                               | 1.2 kVA                                                         | 1.2 kVA                                                         |
|                                | Cos φ                                                               | 0.8                                                             | 0.8                                                             |
|                                | Field volt                                                          | 0-230 V DC                                                      | 0-230 V DC                                                      |
|                                | Speed                                                               | 0-1800 rpm                                                      | 0-1800 rpm                                                      |
| Speed control/                 |                                                                     |                                                                 |                                                                 |

Speed control/

Active power control SCR-converter, electronic current limit setting, start- and stop ramps.

Feedback systems Manual frequency setting Automatic/Constant setting

Field current supply Integrated


Voltage control/

Reactive power control PWM min. ripple-converter, electronic current limit setting

Feedback systems Manual voltage setting Automatic/Constant setting

Separate voltage feedback

### **Instruments:**





# **Electrical Machines Training Aids**

## MV 1046 3-Phase Squirrel Cage Motor with Fault Simulator



The equipment MV 1046 comprises:

- 1 3-phase squirrel cage motor
- 1 Fault simulator
- 1 Plug-in device
- 1 Insulated cable 4 x 1.5 RDV
- 1 Technical description with instructions for fault switching positions.

### Motor

The motor is a standard, 3-phase squirrel cage induction motor (MT 80 A) of which the windings are fitted with outputs to allow fault simulation. These outputs are connected to a terminal with a multi-pole socket.

### **Fault Simulator**

The fault simulator, which comprises a wooden box with a lid and a built-in panel with 11 switches to simulate different faults, has a cable trunk fitted with a multi-pole plug. This plug is intended for connection to the multi-pole socket on the motor's terminal. This connection connects the switches of the fault simulator to the windings of the motor.

### **Plug-in Device**

The fault simulator can be disconnected and replaced by a plug-in terminal device. The motor will then operate normally.

## **Insulated Cable**

The insulated cable is used for the simulation of failures in the input voltage.

The equipment is particularly well suited for fault finding exercises with squirrel-cage induction motors. The following types of faults can be simulated: phase failure of supply voltage, open-circuit winding, short-circuit winding and earth fault.

### **General Data**

Supply voltages

Power Dimensions Fault Simulator Dimensions Motor

Weight

### **MV 1046**

380-415 V 3-phase 50 / 60 Hz 0.55 kW 290 x 270 x 55 mm 270 x 150 x 205 mm 13 kg



## MV 1047 Asynchronous Motor, 3-Phase Demonstration Set

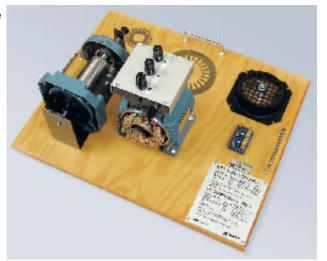
The components of a type MT 63 induction motor are mounted on a wooden board. Only a screwdriver is needed to assemble the motor, and to permit repeated assembly and dismantling.

A 40 V, 3-phase, 50/60 Hz supply is recommended for test-ing the operation of the motor.

#### **Accessories**

Relevant audio-visual aids:

23-28125-5 Colour Slide Series incl. booklet:


Maintenance of Rotating AC-machines

24-27219-1 Booklet: How to look after rotating

machines.

Dimensions 480 x 400 x 150 mm

Weight 7 kg



# MV 1048 3-Phase Squirrel-Cage Motor with Fault Simulator

The equipment consists of a standard 3-phase squirrel-cage motor (MT 80 B) with a 5-wire cable with 3-phase IEC-plug. The motor is star connected but can be changed on the terminals.

A control and fault simulator panel, which is lockable, is mounted on the motor.

The equipment enables the student to gain practice with the most common faults in a squirrel-cage asynchronous motor, like short circuit, open circuit in windings and between windings, as well as earth fault. This ensures the students to have confidence when they are to state the condition of a motor.

The simulation is performed with different switches and a potentiometer for each winding.

### **General Data**

Data of the motor

0.75 kW, 50 / 60 Hz, 1410 / 1700 rpm

380-420 V Y 2.1 A 220-240 V D 3.6 A

Dimension 480 x 400 x 230 mm

Weight 13 kg



Terco reserves the right to make changes in the design and modifications or improvements of the products at any time without incurring any obligations



## **Load Units**

### **MV 1100 Load Resistor**

Load resistor MV 1100 contains three ganged resistors with continuous spindle regulation. The resistors are connected to terminals for 3-ph, single-phase or DC-voltage. The current in the resistor is limited by tubular wire fuses in each phase. The unit has handles and wheels for simple and quick movement and is enclosed in a perforated metal cabinet. A cooling fan is placed in the bottom of the resistor.

# MV 1100-235 Cooling fan supply 230 V AC 50 - 60 Hz MV 1100-116 Cooling fan supply 110 V AC 60 Hz

### **General Data**

3-phase 3.3 kW, continuously adjustable.

 Star connection
 400 / 230 V 0.8-5 A

 Star connection
 230 / 133 V 0.5-5 A

 Delta connection
 400 / 230 V 2.4-8.7 A

 Delta connection
 230 / 133 V 1.3-8.7 A

 DC parallel connection
 220 V 2.3-15 A

Overload capacity, brief duration, approx. 20 %.

Dimensions 630 x 250 x 890 mm

Weight 46 kg



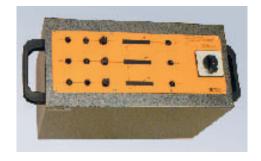
Enclosed in a strong metal cabinet. The front panel has mimic diagram, terminals, fuses and electrical data. The unit can be used on 1- and 3-phase systems. 12 step regulation.

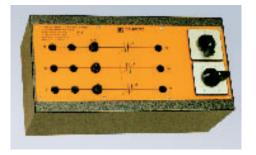


2.5 kVAr, 50-60 Hz

| V                    | Connection | Hz                | A           |
|----------------------|------------|-------------------|-------------|
| 230                  | star       | 50                | 0.2-2.2     |
| 230                  | delta      | 50                | 0.6-6.6     |
| 400                  | star       | 50                | 0.4-3.8     |
| 230                  | star       | 60                | 0.2-1.9     |
| 230                  | delta      | 60                | 0.5-5.6     |
| 400                  | star       | 60                | 0.3-3.3     |
| Dimensions<br>Weight |            | 510 x 2:<br>40 kg | 20 x 320 mm |

## **MV 1102 Load Capacitor**


Housed in a metal cabinet. Electrical data and symbols on the front panel with terminals and fuses. This unit can be used on 1- and 3-phase systems. 6 step regulation.


### **General Data**

2.8 kVAr at 50 Hz, 3.3 kVAr at 60 Hz.

| V                    | Connection | Hz                    | A        |
|----------------------|------------|-----------------------|----------|
| 230                  | star       | 50                    | 0.4-2.4  |
| 230                  | delta      | 50                    | 1.2-7.2  |
| 400                  | star       | 50                    | 0.7-4.2  |
| 230                  | III        | 50                    | 2.1-12.6 |
| 230                  | star       | 60                    | 0.5-2.8  |
| 230                  | delta      | 60                    | 1.4-8.6  |
| 400                  | star       | 60                    | 0.8-5.0  |
| 230                  | III        | 60                    | 2.5-15   |
| Dimensions<br>Weight |            | 185 x 370 x 1<br>7 kg | 170 mm   |









### **MV 1105 Load Resistor**

is enclosed in a perforated, semi-protected metal cabinet. 10-step regulation, terminals and mimic diagram are fitted to the front panel.

### **General Data**

Single-phase 2.3 kW step regulation Single-phase 230 V 0-10 A in steps of 1 A DC 220 V 0-10 A in steps of 1 A

Dimensions 230 x 440 x 420 mm

Weiaht 14 ka

## **MV 1106 Load Capacitor Bank, three-phase**

The bank is made of metallized paper capacitors. The capacitors are fitted with discharging resistors. The capacitance of the bank can be varied in seven steps by means of rotary switches. It can be used in single-phase or three-phase circuits.

### **General Data**

5.3 kVAr at 50 Hz, 6.3 kVAr at 60 Hz

| V          | Connection | Hz       | A          |
|------------|------------|----------|------------|
| 230        | delta      | 50       | 1.9-13.4   |
| 400        | star       | 50       | 1.1-7.7    |
| 230        | III        | 50       | 3.3-23.2   |
| 230        | delta      | 60       | 2.3-16.1   |
| 400        | star       | 60       | 1.3-9.2    |
| 230        | III        | 60       | 3.9-27.8   |
| Dimensions |            | 520 x 22 | 5 x 360 mm |
| Weight     |            | 13 ka    |            |

Weight 13 kg

## **MV 1107 Load Reactor**

The reactor is continuously variable within the range 0.5-3.0 kVAr. When the reactor is connected to a system with 230 V between lines, the setting range can be increased to 0.15-3.0 kVAr by using Y-connection.

The required reactive power is set by means of a crank. For easier setting, the load reactor has a ten-turn scale with 100 scale divisions for each turn. Each winding is fitted with a fuse.

### **General Data**

3-phase 0.5-3.0 kVAr, 400 V Y, 230 V Y, 50-60 Hz

| V          | Connection   | Hz      | A           |
|------------|--------------|---------|-------------|
| 230        | star / delta | 50      | 0.4-7.8     |
| 400        | star         | 50      | 0.7-4.5     |
| 230        | star / delta | 60      | 0.3-7.6     |
| 400        | star         | 60      | 0.6-3.7     |
| Dimensions | 3            | 340 x 1 | 70 x 380 mm |
| Weight     |              | 30 kg   |             |

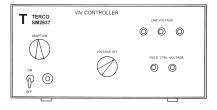
### SM 2637 VAr Controller

This unit is designed to be used together with Terco synchronous machines rating 1-2 kVAr when these are used as VAr compensating units or run as motors / generators with voltage stabilising ability.

### **Specifications:**

Voltage feedback from controlled

network 3-ph 220-400 V Field winding controlled voltage 0-170 V DC Field winding controlled current 0-3 A (max) DC


220-240 V AC 50 / 60 Hz Supply voltage (1-ph) Dim W x H x D 250 x 150 x 300 mm

Weight (approx.)











## **Accessories**

### **MV 1057 Starter Direct-on-line**

The unit consists of a contactor combined with a thermal overload realy. The relay has "trip-free" release, which means the contacts can not be closed again until the relay has cooled down. The contactor has 2 auxiliary contacts.

The thermal overload relay has one break contact. Main contacts: thermal rated current 20 A. Auxiliary contact: thermal rated current 10 A.

Operating voltage 220-240 V, 50-60 Hz.

Current setting range 5.5-8 A.

Dimensions 183 x 325 x 158 mm

Weight 1.6 kg



### MV 2636 AC & DC Starter

This is an universal starter for both AC slip-ring induction motors like MV 1007 and for DC-motors like MV 1006, MV 1028, MV 1036 etc. The unit has clear symbols and mimic diagrams.

Dimensions 350 x 260 x 150 mm

Weight 4 kg



### MV 1905 Shunt Rheostat

Used for field regulation of DC-machines MV 1006, MV 1028, MV 1034 and for synchronous machines MV 1008 and MV 1027. Enclosed in perforated metal case with front panel, carrying terminals,

Enclosed in perforated metal case with front panel, carrying terminals, markings and symbols.

General Data

440 ohms

Potentiometer-connected

Supply voltage 220 V DC Max current 2 A

Dimensions 215 x 190 x 230 mm

Weight 3 kg



## **MV 1010 Flywheel**

The flywheel is stably journalled in 2 spherical bearings and secured to an aluminium foundation. This ensures correct shaft height and lateral alignment. The flywheel is dynamically balanced and has a protective casing with 2 couplings. It is used in retardation tests for determining total friction losses, iron losses and short circuit losses at different excitation levels.

MV 1010 is also suitable to use for tests with heavy load start.

Moment of inertia  $J = 0.406 \text{ kgm}^2$ .

Dimensions 400 x 300 x 300 mm

Weight 56 kg





### **MV 1011 Machine Jack**

MV1011 is an electrically powered mobile lift designed to be used in most of the common lifting situations e.g for lifting test machines or other heavy equipment in a laboratory.

It can be adjusted to three heights to give the most appropriate lifting range. The material is white varnished steel.

Lifting capacity: 175 kg

Dim. approx. 1190 x 650 x height 1420 - 2000 mm

Weight: 43 kg



## **Tachogenerators**

The generator is mounted inside a protective guard. The cover is hinged and can be fixed by a locking screw.

**MV 1024** DC Generator 14 V at 1000 rpm **MV 1025** DC Generator 14 V at 1000 rpm

MV 1029 Protective Cover (only)

Weight 2 kg

Please note: The protective guard can be fitted between the machines to cover the rotating couplings, thus minimising the risk of accidents from rotating machinery.

### **MV 1925 Revolution Counter**

The instrument is enclosed in an universal case equipped with connecting terminals.

MV 1925 is intended for use together with:

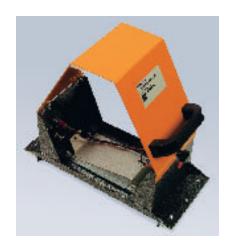
tachometer generator including protective cover, MV 1025 when e. g. DC machine MV 1028 is used instead of the MV 1036 torque meter.

## **General Data**

Measuring range 0-4000 rpm
Data 1000 rpm at 14 V
Size of instrument 144 x 144 mm

Accuracy 1.5 %

Dimensions 195 x 165 x 165 mm


Weight 2 kg

### MV 1005 Pallet

For storage and movement of the electric machines. Constructed of durable metal plate with four double direction wheels.

Dimensions approx.: 360 x 360 x 95 mm

Weight 4 kg









# **Phasing Instruments**

## **MV 1903 Synchronizing Device**

The equipment includes 1 zero voltmeter, 1 circuit breaker, 3 signal lamps and terminal bolts.

With MV 1903 it is an easy matter to synchronise synchronous machines to networks.

| General Data    | MV 1903-235         | MV 1903-405         |
|-----------------|---------------------|---------------------|
| Zero Voltmeter  | 2 x 140 V           | 2 x 220 V           |
| Circuit Breaker | 16 A 500 V          | 16 A 500 V          |
| Synch. Lamps    | 130 V with resistor | 220 V with resistor |
| Supply Voltage  | 220-240 / 127-140 V | 380-415 / 220-240 V |
|                 | 50-60 Hz            | 50-60 Hz            |

Dimensions 315 x 240 x 90 mm

Weight 3 kg

Other voltages can be supplied on request.

## **MV 1909 Synchronizing Unit**

The unit includes 1 dual voltmeter, 1 dual frequency meter and a LED type synchroscope. To switch the synchronised supplies together, load switch MV 1500 is required.

|                      |                   |             | -           |             |
|----------------------|-------------------|-------------|-------------|-------------|
| General Data         | MV 1909-235       | MV 1909-236 | MV 1909-405 | MV 1909-406 |
| Dual Voltmeter       | 2 x 250 V         | 2 x 250 V   | 2 x 500 V   | 2 x 500 V   |
| Dual Frequency Meter | 44-56 Hz          | 54-66 Hz    | 44-56 Hz    | 54-66 Hz    |
| Synchroscope         | 220-240 V /       | 220-240 V / | 380-415 V / | 380-415 V / |
| Supply Voltage       | 127-140 V         | 127-140 V   | 220-240 V   | 220-240 V   |
| Dimensions           | 350 v 140 v 160 m | ım          |             |             |

Dimensions 350 x 140 x 160 mm

Weight 6.5 kg

## **Phase Cop 2 Phase Sequence Indicator**

Tester for determining the direction of rotation or phase sequence in 3-phase systems.

- 3 LEDs indicate whether or not the 3-phase conductors are live
- Very large voltage and frequency range
- Simple operation
- Rugged design
- Permanently connected cables with contact-protected connector plugs, three plug-on test probes and one plug-on alligator clip

### **General Data**

 Voltage range
 90-660 V

 Frequency
 45-1000 Hz

 Dimensions
 70 x 105 x 40 mm

Weight 0.3 kg

## **MV 1417 Terminal board with short-circuit buttons**

Combined terminal and protector board for instruments. Current coils of ammeters and wattmeters connected to the board through a normally short-circuited contact which is opened during measurement. Opening of the contacts for phase R, S, T is done with a robust push-button for each phase.

Reading of the instrument can be done only when the button is pressed, which is of great advantage in the event of wrongly terminated instruments.


The terminal board is 4-pole with six terminals, two jacks and three push-buttons marked R, S, T.

Dimensions 245 x 195 x 50 mm

Weight 1.5 kg









## **Electrical Measuring Instruments**

Terco Instruments are panel-type 96 x 96 mm, mounted in durable painted sheet metal enclosures having plastic feet.

The instruments have a 90° scale and are produced for temperatures between -20 and +50°C. Ammeters can take ten times the rated current for short duration and voltmeters twice the nominal voltage for a short period. Test voltage - 2 kV, AC. All instruments comply with IEC recommendations.

### MV 1924 Ammeter

This ammeter is a moving coil instrument with zero in the centre of the scale. It is used e.g. for determining the slip in slip-ring asynchronous machines. MV 1924 is connected in the rotor circuit in one of the leads between the motor and the rotor starter. By this means it is possible to determine the frequency and instantaneous value of the rotor current. The slip can then be calculated.

### **General Data**

Measuring range 20-0-20 A Accuracy 1.5 Scale length 85 mm

Dimensions 220 x 117 x 90 mm

Weight 1.1 kg



Moving iron instrument.

Measuring ranges AC / DC 0-1-2 A

Accuracy class 2.5

Dimensions 220 x 117 x 90 mm

Weight 1.1 kg

MV 1923 Ammeter

Moving iron instrument.

Measuring ranges AC / DC 0-6-12 A

Accuracy class 2.5

Dimensions 220 x 117 x 90 mm

Weight 1.1 kg

**MV 1926 Voltmeter** 

Moving iron instrument.

Measuring ranges AC / DC 0-50-250-500 V

Accuracy class 2.5

Dimensions 220 x 117 x 90 mm

Weight 1.3 kg

**MV 1974 Voltmeter** 

Voltmeter, moving coil

Measuring range  $0 - \pm 300 \text{ V}$  with centre zero scale.

Accuracy class 1.5

Dimensions 220 x 117 x 125 mm

Weight 2 kg











MV 1927 and MV 1928 are Electronic Wattmeters with active power transducer and adjusted for power factor 1.

## MV 1927 Wattmeter, single-phase

Voltage ranges 50-250-500 V Rated current 1 A Supply voltage 180 - 260 V

Accuracy class 1.5

Dimensions 220 x 117 x 125 mm

Weight 2 kg

## MV 1928 Wattmeter, single-phase

Voltage ranges 50-250-500 V

Rated current 5 A Supply voltage 180-260 V Accuracy class 1.5

Dimensions 220 x 117 x 125 mm

Weight 2 kg

### **MV 1929 Power Factor Meter**

Three-phase instrument, symmetric load.

Measuring range cap. 0.5 ... 1 ... 0.5 ind.

Current range 0-5 A

Voltage range 220 V  $\pm$  20 % 3-phase

Frequency range 40-65 Hz Accuracy class 1.5

Dimensions 220 x 117 x 125 mm

Weight 2 kg

## **MV 1976 Power Factor Meter**

Three-phase instrument, symmetric load.

Measuring range cap. 0.5 ... 1 ... 0.5 ind.

Current range 0-5 A

Voltage range 380 V  $\pm$  20 % 3-phase

Frequency range 40-65 Hz Accuracy class 1.5

Dimensions 220 x 117 x 125 mm

Weight 2 kg

## **MV 1930 Frequency Meter**

Measuring range 46-54 Hz Accuracy class 0.5

Dimensions 220 x 117 x 90 mm

Weight 1.2 kg

## **MV 1938 Frequency Meter**

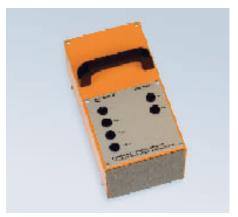
Measuring range 56-64 Hz Accuracy class 0.5

Dimensions 220 x 117 x 90 mm

Weight 1.2 kg

## **MV 1931 Current Transformer**

Primary 20-10-5 A / Sec. 1 A Accuracy class 1.0


Dimensions 220 x 117 x 135 mm

Weight 6 kg











### SM 2627 Universal Meter

With this useful unit voltage, current and power with difficult waveforms can be measured individually with instantaneous value, TRMS value or average value on the display or through terminals. Signal values and signal terminals are galvanically isolated. The unit includes multiplexer with two channels to make it possible to study voltage, current and power on the same time on the display and also by an oscilloscope.

The digital instrument shows all values in percent (0-199.9 %).

### **Technical Data**

Voltage 20, 50, 100, 500 V, AC / DC 1, 2, 5, 10 A, AC / DC Current 20 steps 50-2000 W Power LCD 3<sup>1</sup>/<sub>2</sub> digit 0-199.9 % Instrument Power supply (1-ph) 220-240 V AC 50-60 Hz **Dimensions** 250 x 340 x 150 mm

Weight 2 ka



## SM 2628 3-ph/1-ph Measuring Unit, Voltage / **Current / Power**

This unit is designed to be used together with Terco electrical machines rating 0.4-2 kVA.

The instrument functions can be used also for DC-quantities.

### **Specifications**

Voltage with selector switch LL or L neutral

or DC-voltage Current selector switch IL1, IL2 or IL3

Wattmeter for 1-ph or 3-ph (2-wattmetermet.)

Wattmeter for DC

0-2000 W (max) Supply voltage (1-ph) 220-240 V AC 50-60 Hz

Dimensions 250 x 340 x 150 mm

Weight 6 kg



### **SM 2629 Instrument Unit**

This unit is designed to be used together with the Terco Data Acquisition Unit SM 2607. Normally the three measuring groups U1, I1, P1, U2, I2, P2 and U3, I3, P3 are displayed on the PC-monitor. Here the indications are displayed on LCD-instruments by selector switches for unit and range. To be used when no PC is available.

## **Specifications**

Selector switches for U1, U2, U3, I1, I2, I3,

P1, P2 and P3

Selector switches for measuring ranges automatically via SM 2607

Voltage range 30 - 100 - 300 V Current range 1 - 3 - 10 A

Power range (inicated 0-199 %) 6 scale combinations f.s.d. 30-3000 W

Supply voltage via multi-lead cable from SM 2607

**Dimensions** 250 x 340 x 150 mm

6 kg Weight



1-ph/3-ph, 127-400 V

0-4000 W (max)

0-6 A

3


3



# Measuring and Data Acquisition with PC

The increased use and availability of computers in the schools made it natural to adopt our Classic Lab System to this environment. Terco has developed equipment and software for measuring, control and acquisition of important

parameters.



## SM 2607 Measuring, Data Processing & Control Unit

SM2607 consists of two main blocks: the measuring module and the data processing unit together with the PC-interface. They are built into a sturdy steel enclosure on which the experiment connections are easily made on the front panel. Connections to a PC or other instrument groups are made from the rear.

The measuring module consists of three complete measuring groups, each one with voltage and current inputs together with electronics for analogue calculating of mean values and RMS values together with power expressed as W or VAr. The six inputs (3xvoltage and 3xcurrent) are galvanically isolated from the signal circuits by a 1.5 kV isolating barrier The analogue measuring channels processes AC, DC or mixed quantities.

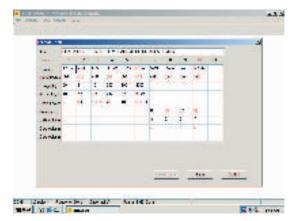
If not operating together with a PC the measuring module can be used together with an external instrument box (SM2629, optional) where three LCD instruments plus selector switches are used to perform the readouts in percents (0-199,9%).

In this case connections are performed by a multiple lead cable together with a multiple contact placed in the rear plate of the SM2607. The cable is included in the code number SM2629.

Technical specifications for the measuring module

| Analogue inputs:                       |                                         | number of channels |
|----------------------------------------|-----------------------------------------|--------------------|
| Voltage, ranges                        | 30 V, 100 V, 300 V<br>AC or DC or mixed | 3                  |
| Current, ranges                        | 1 A, 3 A, 10 A<br>AC or DC or mixed     | 3                  |
| Analogue outputs:                      |                                         |                    |
| Voltage mean value                     | +/- 10 V, buffered                      | 3                  |
| Voltage RMS value                      | +/- 10 V, buffered                      | 3                  |
| Voltage, immediate value               | +/- 10 V                                | 3                  |
| Current mean value                     | +/- 10 V, buffered                      | 3                  |
| Current RMS value                      | +/- 10 V, buffered                      | 3                  |
| Current, immediate value               | +/- 10 V                                | 3                  |
| Power W/VAr                            | +/- 10 V,                               | 3                  |
| Output impedance                       | < 10 kohm                               |                    |
| Accuracy                               | 1 %                                     |                    |
| Frequency response within the accuracy | 20 kHz                                  |                    |

> 1Mohm


0,1-1 ohm

Voltage input impedance

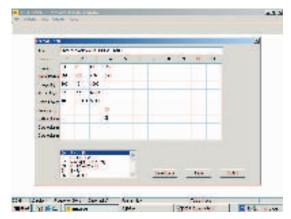
Current input impedance



PC-monitor: Measurements initiated.



Programming mode




Technical specifications for the data acquisition module

| Analogue internal inputs:                                            | number of channels |
|----------------------------------------------------------------------|--------------------|
| Corresponding to all output channels from the measuring module above | 21                 |

### Analogue external in- and outputs:

| •                          | •         |   |
|----------------------------|-----------|---|
| Frequency*                 | 0-10 V    | 1 |
| Torque*                    | ± 10 V    | 1 |
| Speed*                     | ± 10 V    | 1 |
| Shaft power*               | ± 10 V    | 1 |
| (* or any feedback signal) |           |   |
|                            |           |   |
| Aux. Inputs                | ± 10 V    | 3 |
|                            | 40.14     |   |
| Analogue outputs (control) | ± 10 V    | 1 |
| Output impedance           | < 10 kohm |   |



Program mode including formulas

Power inputs are connected by safety terminals.

Outputs are constituted by 4 or 2 mm pin connectors for buffered signals and by BNC connectors for immediate values.

Communication between the SM2607 and the PC is performed by a standard Serial port (RS 232).

No extra sub units have to be installed in the PC.

The data acquisition module in the SM2607 is based on a Motorola microprocessor. The unit is tailored to suit Terco

modules like MV1051 (Torque Meter System) but can also be used with other objects via BNC, 2 mm and 4 mm terminals.

All inputs and outputs have standard signal levels.

Power supply 230 V AC, 50-60 Hz
Dimensions 490 x 200 x 350 mm

Weight 7.5 kg

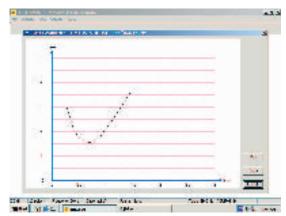


Measured and calculated values

### **SM 2609 Data Collecting Software**

To be used together with SM2607 and a PC for collecting and valuating of experimental values. Data processing

can be done simultaneously with feedback control of, for example, torque or speed or for any controlled situation.


The characteristics of a machine can automatically be collected through programmed control and data processing.

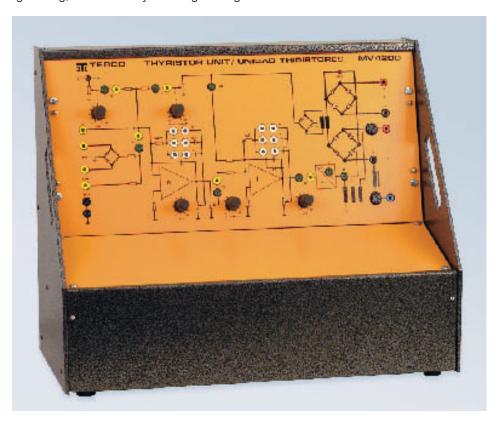
The software is designed to let the user define the experiment setup by himself. Together with an amount of standard experiments, tailor made for the Terco Electrical Machines Lab. Following program modules are available:

- A. Table generator.
- B. Data acquisition defined by the Table generator.
- C. On-line readouts (instruments) of values defined by the Table generator.
- D. Print-out.
- E. File processing: save/load table format, table, graph.
- Export: Export of tables and/or graphs for other program processing.

SM 2609 comprises 3.5" discs and manual.

No computer cards are necessary.




Print out of results



## **Electronic Control of Electrical Machines**

The industrial applications of drive systems having electronic controlled machines, increased rapidly over the last years. Consequently, there is an increasing demand for skilled personnel to design, operate and maintain electronic control systems for electrical machines.

Therefore, Terco has developed, in co-operation with the teaching staff from the Institute for Electric Machinery, Royal Institute of Technology, Stockholm, modern electronic units for educational purposes, intended for practical studies in electric power engineering, control and system engineering as well as industrial electronics.



### **MV 4200 Thyristor Unit**

The Thyristor Unit MV 4200 is equipped with a speed regulator, a current regulator and a SCR-trigger. The time constant of the regulators can be set in steps with three different values each. The gain is continuously adjustable from  $1 - \infty$  (. The other potentiometers are for speed setting, current limitation and RI-compensation.

To be able to measure on the regulation circuits with an oscilloscope in a simple way, they are separated from the mains voltage by an isolating transformer.

The Thyristor Unit MV 4200 can also be used together with a micro computer with D/A-A/D-converter which has an output/input voltage of 0-10 V.

### **Technical Specification**

Power 1.9 kW
Tachometer input 10 V at 1000 rpm
Field control output 200 V DC, 2 A
Rotor control output 0-200 V DC max 10 A
Mains voltage 220-240 V 50- 60Hz 1-ph
Dimensions 500 x 420 x 260 mm

Weight 23 kg

The speed of the DC-motor can be regulated either by tachometer feedback or by rotor voltage feedback. By rotor voltage feedback the losses of the motor are compensated by the RI-compensator.

### Manual

In the manual the basic theory is explained together with the exercises.

### Part A

To illustrate the speed control characteristics with different types of feedback and gain in the controller.

### Part B

To illustrate the dynamic characteristics of the control system with different controllers (P and PI) and different gain.

### Part C

To illustrate optimisation of the control system.



### MV 4206-1 AC-Motor Drive

Three-Phase supply, semi 4-Quadrant Drive

Semi 4Q frequency converter with MOS FET technique and a fixed intermediate DC-link.

Covers the latest development in AC-motor operation with frequency converters. The equipment is designed to work according to different function principles and it is possible to explain several different types of frequency converters existing today.

4-Q-Drive: The Frequency Converter can be used in the conception of speed/torque control and electro-machine theory. The equipment is also suitable for experiments and tests in industries i.e. far beyond the area that the experiments show.

When braking, the energy is transferred by the DC-link and a brake chopper to a built-in load resistor.

There is also an additional adjustable DC-injection brake.

### **Technical Specification**

Input voltage: 3-phase 3 x 400 V + N + PE, 50-60 Hz

Input current: 16 A max
Output Power: 1.5 kW
Output voltage: 3 x 230 V
Max output current: 7 A
Max output frequency: 100 Hz
Choice of polygon: automatic
Breaking points: automatic

Internal switch frequency: 3 kHz max
Type of modulation: PWM sensorless vector
Intermediate DC-voltage: average value 300 V DC

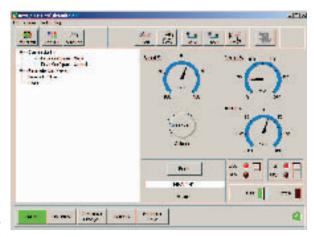
Inverter bridge: MOSFET Control voltage: +/- 12 V

Dimensions 520 x 450 x 280 mm

Weight 16 kg

### **Built-in Instruments and Oscilloscope Functions**

The enclosed software will make it possible to configure the internal connections and operating principles by using a standard PC. On the screen it is possible to monitor 3 analogue instruments and scroll a number of signals/parameters in parallel, which can be saved and printed. The number of parameters/tags possible to study exceeds 200.


### **Standard Settings and Advanced Settings**

Most parameters are set by default but settings can also be done manually from the front controls: Typically: Speed, Max Speed, Acc ram, Flux, Ret ramp, Ilim etc. Advanced settings, >200 parameters/tags, are performed by Operator Station on the unit, PC nearby the unit, connected to COM1 (COM2). As option we can deliver MV4206-1 with RS485 remote control.

### **Manuals**

consist of a theory section and exercise section together with a software description. The theory part explains for example general theory of the conditions for torque developed in an arbitrary machine, while the exercise section contains theory that are directly connected to the different experiments. The software is enclosed as a complete binder together with a corresponding CD.





## MV 4216 Inverter Bridge

The MV 4216 is used to simulate AC-converters working principles. It is hand operated.



The unit consists of

DC-input in connection with 3 two

directional switches with zero position, and a 6 pulse rectifier bridge for feedback of reactive power to the DC-side.

### **Technical specifications**

Dimensions 150 x 90 x 50 mm

Weight 0.3 kg



### MV 4207-1 DC-Motor Drive

Single-phase 4-Quadrant Rectifier, Three-Phase supply

Covers the latest development in DC-motor operation with analogue control. The equipment is designed to work according to different industrial environments. The drive has signal in- and outputs for connections to slave and/or master drives.

To cover a wider range of machines regarding voltage and speed the primary supply is taken from a standard 3-phase outlet which will supply the inverter bridges by 1-phase 400 V.

The design will enhance the possibilities of learning the theory and practice of understanding the operation of 4Q-drives for both single drives and the basic understanding of three bridges and their commutation

The 4-Q-DC-Drive can be used in the conception of speed/torque control versus electro-machine theory.

When braking, the energy is transferred directly to the supplying network by operating in all four quadrants.



Input voltage: 3-phase 3 x 400 V + N + PE, 50-60 Hz Input max current: 16 A, rotor inductance is included

Output voltage: 0-250 V DC Output current: 0 - 12 A (max 16 A) Nominal output power: 2 kW

Design: Tutorial where the 4Q industrial/professional aspects are

enhanced

Control: Manually operated Digital / Analogue

Front control parameters: 12

Feedback: DC-tacho or armature voltage

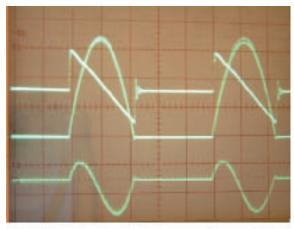
Built-in unit for immediate: U+I+P signals, isolated, including MUX

for oscilloscope.

Built-in protections and contactor relays

Dimensions 520 x 450 x 280 mm Weight 23 kg

## **Standard Settings**


12 Parameters are set manually:

Typically: Speed, Max Speed, Acc ram, Flux, Ret ramp, Ilim, Current/Speed proportional, Current demand in/out, etc.

Floating switches and potentiometers are used to study step response and stability.

The results of the dynamic response regarding voltage, current and immediate power can be studied fully isolated on a standard oscilloscope via the built in isolation amplifier and multiplexer.







### **Manuals**

Consist of a theory section and an exercise section. The theory part

explains for example general theory of the conditions for torque developed in an arbitrary machine, while the exercise section contains theory sections that are directly connected to the different experiments. The Manual consists of a complete binder together with an additional section, which will explain the UIP-unit (Voltage/Current/Power – unit) together with oscilloscope snap-shots showing different operation modes of the rectifier.

Terco reserves the right to make changes in the design and modifications or improvements of the products at any time without incurring any obligations



### MV 4207-3 DC-Motor Drive

Three-phase 4-Quadrant Rectifier, Three-Phase supply

Covers the latest development in DC-motor PC-controlled operation with 6 pulse 4Q rectifiers. The equipment is designed to work according to different function principles and it is possible to explain several different types of DC-drives depending on the purpose and industrial environment from traction to paper- and steel mills.

Output current/voltage can be chosen to optimize torque/angular speed or to optimize other parameters by using a PC and the enclosed software.

When braking, the energy is transferred directly to the supplying network by operating in all four quadrants.

The field rectifier can be programmed manually or from a PC for optimized field control.

The 4Q DC Drive can be used in the conception of speed/torque control versus electro-machine theory. The equipment is also suitable for experiments and tests in industrial applications.



Input voltage: 3-phase 3 x 400 V + N + PE, 50-60 Hz

Input max current: 16 A
Output voltage: 0 - 400 V DC
Output current: 0 - 12 A (max 16 A)
Nominal output power: 2 kW (max 3 kW)

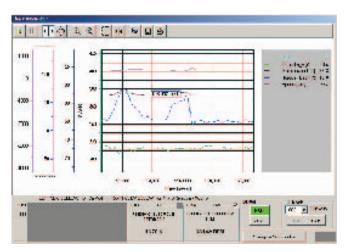
Design: Tutorial but with the PC-controlled industrial / professional

aspects enhanced.

Control modes: Manually by front components, Manually by Op-

erator Station, PC by RS 232 +"CELite"" + software Front controls: Manually Digital > 20, Analogue > 4

Configuration: by PC or Operator Station Self-tuning: by PC or Operator Station Built-in protections and contactor relays


Dimensions 520 x 450 x 280 mm

Weight: 25 kg

### **Built-in Instruments and Oscilloscope Functions**

The enclosed software will make it possible to configure the internal connections and operating principles by using a standard PC. On the screen it is possible to monitor 3 analogue instruments and scroll a number of signals/parameters in parallel, which can be saved and printed. The number of parameters/tags possible to study exceeds 200.





## **Standard Settings and Advanced Settings**

Most parameters are set by default but settings can also be done manually from the front controls: Typically: Speed, Max Speed, Acc ram, Flux, Ret ramp, Ilim etc. Advanced settings, >200 parameters/tags, are performed by Operator Station on the unit, PC nearby the unit, connected to COM1 (COM2). As option we can deliver MV4207-3 with RS485 remote control.

### **Manuals**

consist of a theory section and an exercise section. The theory part explains for example general theory of the conditions for torque developed in an arbitrary machine, while the exercise section contains theory that are directly connected to the different experiments. The software is described in an enclosed separate binder together with a corresponding CD.



## **MV 1439 Power Factor Control Unit**



### **Background**

Terco Power Factor Controller is a new module within our MV-program.

With the PFC you can minimise the currents caused by reactive losses of power and thereby optimising the transfer of energy between generation and loading. This is becoming more and more important today when "Saving energy" is vital in a world with focus on pollution and shortage of energy.

### Field of application

Inductive or mixed inductive and resistive networks in need of compensation, for example when starting and running induction motors.

### **Principles of operation**

Depending on the power factor of the loading network a microprocessor will connect groups of capacitors. By measuring phase voltages and current the microprocessor will calculate how many capacitive groups that has to be connected and also in which combinations. The different electrical quantities will be shown on the display of the controller.

### **Electrical details**

Number of 3-ph groups 6

Power factor setting 0.7 inductive to 0.7 capacitive

Nominal voltage 3 x 230 V 50 – 60 Hz Code no. MV 1439-235

3 x 400 V 50 - 60 Hz Code no. MV 1439-405

Nominal power 0-2 kVAr cap.

**PF-C**ontroller Automatic or manual

Adjustable delay times, switching sequences and strategies

Monitoring and Voltage Measurement on the Current

controller Apparent and reactive power

Harmonic voltage and current distortion

Power factor

Switching modes Linear, circular, progressive, direct, integral, normal

Indication lamps Indication lamps for the capacitor groups which are connected

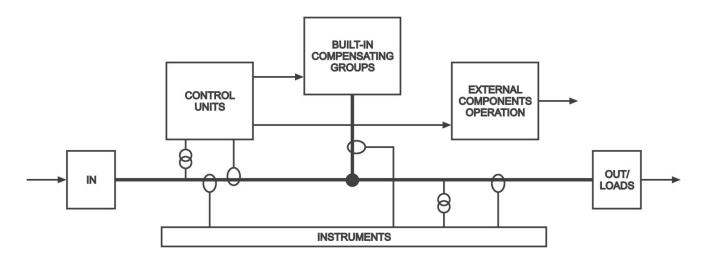


### Physical design

The **Power Factor Control** Unit is housed in a sturdy apparatus box with a clear mimic diagram explaining how to connect the supplying net from the left to the right side where the network in need for power factor compensation is connected. Readings, parameters and sub parameters are indicated on the front of the controller. Other settings and programming than the defaults are simply performed from the keyboard and displayed on the controller front. As an option readouts and programming can be made from a PC communicating by the RS232 port.

### General data:

Power supply 1-ph 220 - 240 V, 50 - 60 Hz


Dimensions WxHxD 51 x 57 x 28 cm

Weight 24 kg

### **Typical Experiments with Terco PFC:**

- The concept of active power, apparent power and reactive power
- The concept of power factor and "cos φ"
- The concept of measuring methods
- Ratio settings
- Start current settings (C/k)
- Delay times
- Efficiency and losses
- Linear, circular, progressive, direct, integral, and normal switching modes
- PF-Controller design and schematics
- The total voltage harmonic distortion
- The total current harmonic distortion
- Programming the controller
- PF-Controller and resistive/inductive loads
- PF-Controller and induction motor loads
- Control range limits
- Fault tracing

### **Block Schedule**



Terco reserves the right to make changes in the design and modifications or improvements of the products at any time without incurring any obligations



## **MV 4250 Wind Mill Control Unit**



### **Background**

Depending on energy prices, negative influence on the environment, running on the edge of available power, transmission costs and the risk of local black-outs the need for alternative energy sources is obvious. Wind power has been existing in a smaller scale for decades but have met a positive trend lately.

The former drawbacks like expensive turbines, generators, gear-boxes and conventional transmission lines together with disturbances on the environment are now overcome to a great extent.

It is now possible to use a cheap turbine with firm blades designed for floating speed with an operating range from very low to very high speed. The turbine is connected mechanically to a conventional standard type self exciting induction motor, which is the cheapest and most sturdy machine available in the market. For bigger units synchronous generators equipped with permanent magnets are standard. In this case we will study a wind mill of some hundred kW. These windmills can be put out in the sea along the coastline and the power is transferred to the grid network by DC-cables on a floating voltage level which by means of modern technology is transformed to conventional 3-ph 50 (60) Hz energy.

### **Description**

The Wind Mill Control Unit is designed to be connected to an external standard type induction motor (optional) driven by any machine (optional) which speed can be varied. By means of the MV4250 the induction motor/generator will be self excited and deliver a lower or higher 3-phase voltage of different frequencies. There is a built in resistive load bank to give the induction generator different working points or break-down points. By the built-in capacitor bank the excitation can be increased gradually to buffer increasing load. A group of compensating inductances will keep the voltage level within reasonable limits. A 3-phase rectifier bridge will supply the output side with a floating DC-voltage which can either be loaded by the internal resistive loads or connected to an external DC-line which is connected to a 4Q-rectifier (optional) operating against the infinit bus in current limitation mode.

There are instruments for AC- and DC voltages and ammeters for AC-input power, inductive current and capacitive current together with a DC-ammeter on the output to give a clear view of the generator operation. Jumpers will give possibilities to connect other instruments like watt-meters (optional). Principle diagrams printed on the front plate.



### **Examples of experiment setups**

- Self exciting of an induction motor/generator
- Working points depending on speed and capacitance
- Working characteristics depending on resistive loads
- The influence of compensating inductances
- Total efficiency depending on involved parameters
- Magnetising currents and risk for over-excitation
- Rotating currents
- Principles of floating speed and frequency
- Principles of DC energy transfer using a 4Q-rectifier operating in current limit mode at floating voltage

### **Technical Specifications**

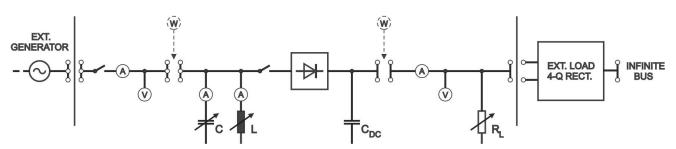
Minimum/maximum power by design

Magnetising capacitors

Compensating inductors

0.5 – 2.0 kVA input
by 6-step selector switch
by 6-step selector switch

Resistive load bank on DC-side connected by contactor relay and jumpers


3-phase rectifier block
V-meter for AC-input
300 V AC
V-meter for DC-output
400 V DC
A-meter for AC-input
4 A AC
A-meter for capacitive current
4 A AC
A-meter for inductive current
4 A AC
A-meter for DC-output
6 A DC

Suitable induction machine (optional) 0.75 – 1.5 kW Suitable 4Q-rectifier (optional) >1.5 kW

Power supply 220-240 V AC, 50 – 60 Hz

Dimensions 510x280x570 mm Weight approx. 30 kg

## **Diagram**



Terco reserves the right to make changes in the design and modifications or improvements of the products at any time without incurring any obligations



# Flexes and Stand



### **Terco Flex**

Because of increased personal safety requirements, detailed specifications are imposed on laboratory flexes for use in schools.

The Terco Flex complies with the safety requirement that connection shall not be made sideways, as well as with all reasonable demands on a laboratory flex for use in physics, tele-communication and electric power laboratories.

Semi-protected axial termination. Six silver-plated resilient contact pins ensure a hard and uniform contact pressure.

Central robust guide pin with hemispherical jacket protects against damage.

Moulded soft PVC covering for high reliability cable anchorage.

Especially soldered cable anchorage with 18 mm² contact surface.

### **General Data**

Standard colours blue, read, yellow, black, yellow/green Standard area 2.5 mm² containing 650 wires of

0.07 mm diameter

Rated current 25 A



### **Standard Flex Sets**

### MV 1800 Flex Set

| Set of 120 Leads in 2 colours. Area 2.5 mm <sup>2</sup> |       |       |        |        |
|---------------------------------------------------------|-------|-------|--------|--------|
| Length                                                  | 25 cm | 50 cm | 100 cm | 200 cm |
| Red                                                     | 10    | 20    | 20     | 10     |
| Blue                                                    | 10    | 20    | 20     | 10     |

### MV 1801 Flex Set

| Set of 200 Leads in 5 colours. Area 2.5 mm <sup>2</sup> |       |       |        |        |
|---------------------------------------------------------|-------|-------|--------|--------|
| Length                                                  | 25 cm | 50 cm | 100 cm | 200 cm |
| Red                                                     | 10    | 10    | 10     | 10     |
| Yellow                                                  | 10    | 10    | 10     | 10     |
| Blue                                                    | 10    | 10    | 10     | 10     |
| Black                                                   | 10    | 10    | 10     | 10     |
| Yellow/green                                            | 10    | 10    | 10     | 10     |

### MV 1830 Flex Set

| Set of 100 Leads in 5 colours. Area 2.5 mm <sup>2</sup> |       |       |        |        |
|---------------------------------------------------------|-------|-------|--------|--------|
| Length                                                  | 25 cm | 50 cm | 100 cm | 200 cm |
| Red                                                     | 5     | 5     | 5      | 5      |
| Yellow                                                  | 5     | 5     | 5      | 5      |
| Blue                                                    | 5     | 5     | 5      | 5      |
| Black                                                   | 5     | 5     | 5      | 5      |
| Yellow/green                                            | 5     | 5     | 5      | 5      |

### Separate Flexes.

Area 2.5 mm<sup>2</sup>. Please note, each Ref. No. refers to a pack of 10 leads.

| Length       | 25 cm   | 50 cm   | 100 cm  | 200 cm  |
|--------------|---------|---------|---------|---------|
| Red          | MV 1802 | MV 1807 | MV 1812 | MV 1817 |
| Yellow       | MV 1803 | MV 1808 | MV 1813 | MV 1818 |
| Blue         | MV 1804 | MV 1809 | MV 1814 | MV 1819 |
| Black        | MV 1805 | MV 1810 | MV 1815 | MV 1820 |
| Yellow/green | MV 1806 | MV 1811 | MV 1816 | MV 1821 |



## **Laboratory Flexes with Safety Plugs, Retractable Shroud**

Safety lead with 2 covered spring plugs of 4 mm diameter, with retractable shroud covering the plugs, and 4 mm diameter axial bushings moulded with Polypropylen, fixed to 1.5 mm² copper thread, PVC isolated, outer diameter 4 mm. Colours black, red, blue, yellow, green/yellow. Rated current 16 A.

### MV 1800-H Flex Set

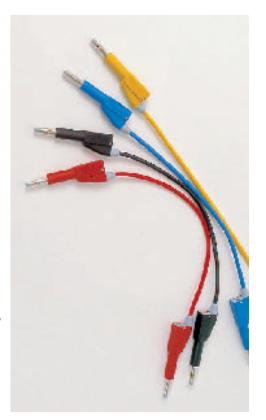
Set of 120 leads in 2 colours. Area 1.5 mm<sup>2</sup>

| Length | 25 cm | 50 cm | 100 cm | 200 cm |
|--------|-------|-------|--------|--------|
| Red    | 10    | 20    | 20     | 10     |
| Blue   | 10    | 20    | 20     | 10     |

### MV 1801-H Flex Set

Area 1.5 mm<sup>2</sup>.

Set of 200 leads in 5 different colours, red, yellow, blue, black and yellow/green, in 4 different lengths, 25, 50, 100 and 200 cm, 10 of each.


| Length       | 25 cm | 50 cm | 100 cm | 200 cm |
|--------------|-------|-------|--------|--------|
| Red          | 10    | 10    | 10     | 10     |
| Yellow       | 10    | 10    | 10     | 10     |
| Blue         | 10    | 10    | 10     | 10     |
| Black        | 10    | 10    | 10     | 10     |
| Yellow/green | 10    | 10    | 10     | 10     |
|              |       |       |        |        |

### MV 1830-H Flex Set

Area 1.5 mm<sup>2</sup>

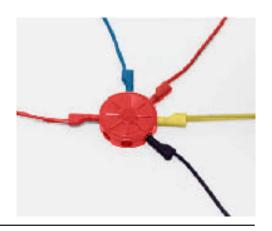
Set of 100 leads in 5 different colours, red, yellow, blue, black, yellow/green, and 4 different lengths, 25, 50, 100 and 200 cm, 5 of each.

| Length       | 25 cm | 50 cm | 100 cm | 200 cm |
|--------------|-------|-------|--------|--------|
| Red          | 5     | 5     | 5      | 5      |
| Yellow       | 5     | 5     | 5      | 5      |
| Blue         | 5     | 5     | 5      | 5      |
| Black        | 5     | 5     | 5      | 5      |
| Yellow/green | 5     | 5     | 5      | 5      |
|              |       |       |        |        |



### **Separate Flexes**

Area 1.5 mm<sup>2</sup>


Please note, each Ref. No. refers to a pack of 10 leads.

| Length       | 25 cm     | 50 cm     | 100 cm    | 200 cm    |
|--------------|-----------|-----------|-----------|-----------|
| Red          | MV 1802-H | MV 1807-H | MV 1812-H | MV 1817-H |
| Yellow       | MV 1803-H | MV 1808-H | MV 1813-H | MV 1818-H |
| Blue         | MV 1804-H | MV 1809-H | MV 1814-H | MV 1819-H |
| Black        | MV 1805-H | MV 1810-H | MV 1815-H | MV 1820-H |
| Yellow/Green | MV 1806-H | MV 1811-H | MV 1816-H | MV 1821-H |

### MV 1823 Terminal Block, Set of 10

with 8 sockets for 4 mm banana plugs. Load current capacity 25 A. The sockets are indicated by a clear symbol on the face of the block. With these terminal blocks it is possible to set up simple, easy-to-understand experimental circuits. They simplify circuit connections and checking. The set consists of 5 red and 5 blue terminal blocks.

Diameter 58 mm Weight 0.4 kg





### **Laboratory Flexes with Safety Plugs**

Safety lead with 2 covered spring plugs of 4 mm diameter, with stiff protection sockets covering the plugs, and 4 mm diameter axial bushings moulded with Polypropylen, fixed to 1.5 mm² copper thread, PVC isolated, outer diameter 4 mm. Colours black, red, blue, yellow, green/yellow. Rated current 16 A.

### MV 1800-HF Flex Set

Set of 120 leads in 2 colours. Area 1.5 mm<sup>2</sup>

| Length | 25 cm | 50 cm | 100 cm | 200 cm |
|--------|-------|-------|--------|--------|
| Red    | 10    | 20    | 20     | 10     |
| Blue   | 10    | 20    | 20     | 10     |

### MV 1801-HF Flex Set

Area 1.5 mm<sup>2</sup>.

Set of 200 leads in 5 different colours, red, yellow, blue, black and yellow/green, in 4 different lengths, 25, 50, 100 and 200 cm, 10 of each.

| Length       | 25 cm | 50 cm | 100 cm | 200 cm |
|--------------|-------|-------|--------|--------|
| Red          | 10    | 10    | 10     | 10     |
| Yellow       | 10    | 10    | 10     | 10     |
| Blue         | 10    | 10    | 10     | 10     |
| Black        | 10    | 10    | 10     | 10     |
| Yellow/green | 10    | 10    | 10     | 10     |



### MV 1830-HF Flex Set

Area 1.5 mm<sup>2</sup>

Set of 100 leads in 5 different colours, red, yellow, blue, black, yellow/green, and 4 different lengths, 25, 50, 100 and 200 cm, 5 of each.

| Length       | 25 cm | 50 cm | 100 cm | 200 cm |
|--------------|-------|-------|--------|--------|
| Red          | 5     | 5     | 5      | 5      |
| Yellow       | 5     | 5     | 5      | 5      |
| Blue         | 5     | 5     | 5      | 5      |
| Black        | 5     | 5     | 5      | 5      |
| Yellow/green | 5     | 5     | 5      | 5      |
|              |       |       |        |        |

### **Separate Flexes**

Area 1.5 mm<sup>2</sup>

Please note, each Ref. No. refers to a pack of 10 leads.

| Length       | 25 cm      | 50 cm      | 100 cm     | 200 cm     |
|--------------|------------|------------|------------|------------|
| Red          | MV 1802-HF | MV 1807-HF | MV 1812-HF | MV 1817-HF |
| Yellow       | MV 1803-HF | MV 1808-HF | MV 1813-HF | MV 1818-HF |
| Blue         | MV 1804-HF | MV 1809-HF | MV 1814-HF | MV 1819-HF |
| Black        | MV 1805-HF | MV 1810-HF | MV 1815-HF | MV 1820-HF |
| Yellow/Green | MV 1806-HF | MV 1811-HF | MV 1816-HF | MV 1821-HF |

### MV 1904 Flex Stand

For suspension of laboratory flexes. The stand has 12 slots between parallel tubes with space for 10-15 laboratory flexes in each slot. Flexes of length 200 cm are suspended in a separate position above the stand. This rigid stand has a heavy steel plate pedestal.

### **General Data**

Height 1170 mm Weight 9 kg





# **Equipment Lists**

## **Torque Meter Set, Digital**

MV 1051

MV 1830

MV 1904

MV 1036

| MV 1028 | DC Machine (alt. MV 1034)            |
|---------|--------------------------------------|
| MV 1029 | Protective Cover (2 pcs)             |
| MV 1003 | Mobile Test Bench (alt. MV 1700)     |
| MV 1004 | Machine Bed                          |
| MV 1005 | Pallet for Machines (3 pcs)          |
| MV 1006 | DC Machine                           |
| MV 1007 | Slip Ring Motor                      |
| MV 1008 | Synchronous Machine                  |
| MV 1009 | Squirrel Cage Motor                  |
| MV 1010 | Flywheel                             |
| MV 2636 | AC and DC Starter                    |
| MV 1100 | Load Resistor                        |
| MV 1101 | Load Reactor                         |
| MV 1102 | Load Capacitor                       |
| MV 1300 | Power Pack (alt. MV 1302 or MV 1304) |
| MV 1903 | Synchronizing Unit                   |
| MV 1417 | Terminal Board                       |
| MV 1500 | Load Switch                          |
| MV 1502 | Reversing Switch                     |
| MV 1503 | Star-Delta Switch                    |
| MV 1905 | Shunt Rheostat (2 pcs)               |
|         |                                      |

Lab Flex Set (alt. MV 1830-HF)

Electric Torque Meter (alt. MV 1026)

Torque and Power Meter



# **Electrical Torque Meter Set, Analogue Dial**

Flex Stand

|         | ziootiio ioiquo iviotoi (aiti iviv 1020) |
|---------|------------------------------------------|
| MV 1003 | Mobile Test Bench (alt. MV 1700)         |
| MV 1004 | Machine Bed                              |
| MV 1005 | Pallet for Machines (3 pcs)              |
| MV 1006 | DC Machine                               |
| MV 1007 | Slip Ring Motor                          |
| MV 1008 | Synchronous Machine                      |
| MV 1009 | Squirrel Cage Motor                      |
| MV 1010 | Flywheel                                 |
| MV 2636 | AC and DC Starter                        |
| MV 1025 | Tachogenerator with cover                |
| MV 1100 | Load Resistor                            |
| MV 1101 | Load Reactor                             |
| MV 1102 | Load Capacitor                           |
| MV 1300 | Power Pack (alt. MV 1302 or MV 1304)     |
| MV 1903 | Synchronizing Unit                       |
| MV 1417 | Terminal Board                           |
| MV 1500 | Load Switch                              |
| MV 1502 | Reversing Switch                         |
| MV 1503 | Star-Delta Switch                        |
| MV 1905 | Shunt Rheostat                           |
| MV 1830 | Lab Flex Set (alt. MV 1830-HF)           |
| MV 1904 | Flex Stand                               |
|         |                                          |





## **Eddy Current Brake Set**

MV 1045 Eddy Current Brake Set

MV 1003 Mobile Test Bench (alt. MV 1700)

MV 1004 Machine Bed

MV 1005 Pallet for Testing Machines (3 pcs)

MV 1006 DC Machine
MV 1007 Slip Ring Motor
MV 1008 Synchronous Machine

MV 1008 Synchronous Machine
MV 1009 Squirrel Cage Motor
MV 2636 AC and DC Starter

MV 1024 Tachogenerator with cover

MV 1300 Power Pack (alt. MV 1302 or MV 1304)

MV 1417 Terminal Board
MV 1500 Load Switch
MV 1502 Reversing Switch
MV 1503 Star-Delta Switch
MV 1905 Shunt Rheostat

MV 1830 Lab Flex Set (alt. MV 1830-HF)

MV 1904 Flex Stand



### **Brake Set**

| MV 1053 | DC-Machine Brake Control             |
|---------|--------------------------------------|
| MV 1028 | DC Machine (alt. MV 1034)            |
| MV 1003 | Mobile Test Bench (alt. MV 1700)     |
| MV 1004 | Machine Bed                          |
| MV 1005 | Pallet for Machines (3 pcs)          |
| MV 1006 | DC machine                           |
| MV 1007 | Slip Ring Motor                      |
| MV 1008 | Synchronous Machine                  |
| MV 1009 | Squirrel Cage Motor                  |
| MV 2636 | AC and DC Starter                    |
| MV 1024 | Tachogenerator with cover            |
| MV 1300 | Power Pack (alt. MV 1302 or MV 1304) |
| MV 1417 | Terminal Board                       |
| MV 1500 | Load Switch                          |
| MV 1502 | Reversing Switch                     |
| MV 1503 | Star-Delta Switch                    |
| MV 1905 | Shunt Rheostat (2 pcs)               |
| MV 1830 | Lab Flex Set (alt. MV 1830-HF)       |
| MV 1904 | Flex Stand                           |
|         |                                      |



Terco reserves the right to make changes in the design and modifications or improvements of the products at any time without incurring any obligations



### **Machine Test Set**

MV 1028 DC Machine (alt. MV 1034)
MV 1003 Mobile Test Bench (alt. MV 1700)

MV 1004 Machine Bed

MV 1005 Pallet for Machines (3 pcs)

MV 1006 DC machine
MV 1007 Slip Ring Motor
MV 1008 Synchronous Machine
MV 1009 Squirrel Cage Motor
MV 1010 Flywheel

MV 2636 AC and DC Starter

MV 1025 Tachogenerator with cover

MV 1100 Load Resistor MV 1101 Load Reactor MV 1102 Load Capacitor

MV 1300 Power Pack (alt. MV 1302

or MV 1304)

Synchronizing Unit MV 1903 MV 1417 Terminal Board MV 1029 Protective cover MV 1500 Load Switch MV 1502 Reversing Switch MV 1503 Star-Delta Switch MV 1905 Shunt Rheostat (2 pcs) MV 1925 **Revolution Counter** 

MV 1830 Lab Flex Set (alt. MV 1830-HF)

MV 1904 Flex Stand



### **Additional Test Machines**

MV 1015 Reluctance Motor
MV 1016 Squirrel-cage Motor
MV 1017 Dahlander Motor, 2-speed
MV 1018 Universal Motor
MV 1019 Split-phase Motor

MV 1020 Induction Motor, Capacitor Start
MV 1023 Repulsion Induction Motor
MV 1027 Synchronous Machine,

Salient-poles

MV 1030 Induction Motor, 2-speed,

2 Windings

MV 1031 Induction Motor, Thermistor

Protected

MV 1032 Thermal Relay for MV 1031 MV 1037 Induction Motor, Capacitor

Start and Run



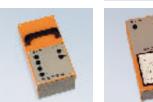


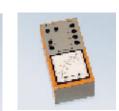









### **Instruments**


MV 1922 Ammeter 0-2 A
MV 1923 Ammeter 0-12 A
MV 1924 Ammeter 20-0-20 A
MV 1926 Voltmeter (2 pcs)
MV 1927 Wattmeter
MV 1928 Wattmeter
MV 1929 Power Factor Meter (alt. MV 1976)
MV 1930 Fraguepow meter (alt. MV 1938)

MV 1929 Power Factor Meter (alt. MV 1976
MV 1930 Frequency meter (alt. MV 1938)
MV 1931 Current Transformer (2 pcs)
Phase Cop 2 Phase Sequence Indicator

Multimeter (2 pcs)











# **Classic Electrical Machine System**

The Classic System is completely modular. The test motors and generators have a power of approximately 1 kW.

This size of machine is such that:

- 1. Standard instruments can be used.
- 2. Safety precautions can be observed easily.
- It is possible to interchange the machines without using a crane or hoist.
- 4. Prices are competitive.

Due to the top quality and robust construction of Terco products, they are able to withstand the rough handling by new, inexperienced students.

With Terco Classic Machines it is possible to produce characteristics which are typical for machines of ratings 6-8 kW, as our machines have more iron and copper than normal. Compare the weight of our test machines with others.



# Scan Lab System



Scan Lab is completely modular, and the various modules can be bought separately and integrated as the demand arises. This enhances the use of Scan Lab and makes it flexible and economical.

All the electrical machines as well as the power electronics have been chosen to take uniquely industrial standard into consideration.

Terco Scan Lab is very accurate. Very small electrical machines give unrealistic measuring values. We have carefully considered this by optimising the winding data of the machines and by choosing an effect of approx 400 W.

Our Compact Drive is a cost effective solution to teach AC and DC drives.



# **Experiment Manuals**

The equipment listed in this brochure is designed especially for educational purposes. The motors, generators, load units and power supply units are interchangeable so that in addition to the listed experiments it is also possible to demonstrate installation wiring requirements, meter connections, motor symptoms during overload and many other important conditions necessary in different syllabi.

A brief synopsis of experimental coverage is given below.

### **Machines Part 1**

DC Generators, Series, shunt, compound, sep. excited. DC Motors, Series, shunt, compound, sep. excited. Synchronous Motor & Generator. Slip Ring Motor.

Slip Ring Motor. Squirrel Cage Motor.

### **Machines Part 2**

Dahlander Motor, 2 speed, 1 winding. Universal Motor.
Split Phase Motor.
Capacitor Start Motor.
Capacitor Start and Run Motor
Repulsion Induction Motor.
Induction Motor, 2 speed, 2 windings.

#### **Additional**

Induction Motor, thermistor protected. Reluctance Motor.

#### Characteristics

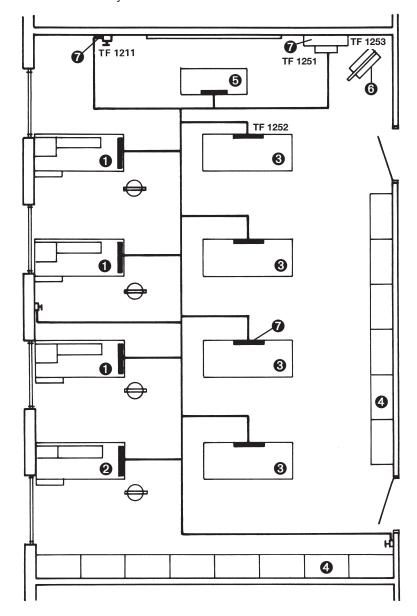
| No Load       | $E = f(I_m)$        | Synch Gen.              | $IA = f(I_M)$     |
|---------------|---------------------|-------------------------|-------------------|
| Load          | $U = f(I_B)$        | Synch. Motor            | $IA = f(P_{out})$ |
| Efficiency    | $n = f(P_{out})$    | Synch. Gen.             | $U = f(I_A)$      |
| Torque/Speed  | M = f(n)            | Phase Compensation      |                   |
| Speed / Field | $n = f(I_m)$        | Reverse Current Braking |                   |
| Speed / arm.  | $n = f(U_{\alpha})$ | Loss Summation Tests    |                   |

The foundation block on the modular system can be different Torque Measuring Systems:

- 1. Torque and Power Meter MV 1051 together with prime mover or brake unit MV 1028 (alt. MV 1034).
- 2. Analogue Torque Meter (Dial) MV 1036 (alt. MV 1026).
- 3. Eddy Current Brake MV 1045 for braking / load tests on motors only.
- 4. Brake Control Unit MV 1053 together with prime mover or brake unit MV 1028.
- 5. DC-Machine MV 1028 (alt. MV 1034) for more simplified experiments on motor / generators. (No torque)

All above torque measuring systems can be coupled to the Terco test machines on Terco Machine Bed MV 1004.




Examples of Experiment Manuals.



# **Laboratory Layout**

The layout is most important when designing a functional laboratory. It is of great importance that equipment and furniture are taken into account early in the planning stage. A standard solution for planning a laboratory for 16 students can be seen below. If the space of the laboratory has been determined already, the standard solution may not be applicable. Our engineers will be pleased to advise on any individual requirements.

See also our brochure "Power Distribution System and Furniture for Laboratories".



- Three Torque Meter Benches complete with accessories such as motors, loads, power supplies, switches, flex stands with flexes.
- 2 One Eddy Current Brake Bench or other type of brake complete with all accessories.
- Four benches for experiments where the motor bench is not necessary and for theoretical follow-up of the experiments.
- **4** Cabinets for instruments, tools and accessories.
- **6** Teacher desk.
- 6 Machine jack.
- Terco Safety Power Distribution System with key-operated central, transformer, student-panels and emergency stops.



## **Power Distribution System increases Safety in School Laboratories**

Terco's Power Distribution System consists of a distribution board which is installed near the classroom. Each circuit is protected by a MCB, making energising and isolating a simple process for the teacher. There is also a protection device which breaks the voltage in the event of accidental disturbance in any phase. An emergency stop is placed in a prominent position in the classroom and will break all supplies when operated.

Voltage system in the lab: 400/230 V 3-ph and 230 V 1-ph Incoming voltage 400/230 V 3-ph



### **TF 1251 Distribution Panel**

The distribution panel is manufactured in varnished sheet metal and used for separate distribution of power to each lab. group (student panel). It contains one main switch, eleven 3-pole 16 A MCB (miniature circuit breakers), one ELCB (earth leakage circuit breaker), one indicator lamp and lockable ON-key. The distribution panel breaks the supply voltage when a current > 30 mA flows in the protection lead.

TF 1251 is wired for connection of outgoing groups to each MCB. The incomming wires to be connected to the main switch.

Dimensions: 480 x 330 x 60 mm

Weight: 10 kg



### **TF 1253 Transformer**

10 kVA intermittent

The transformer is air cooled and enclosed in sheet metal

for placement on the floor.

Main voltage: 3-ph 380-415 V +/-5% 50-60 Hz

Connection : D/Y-0

Secondary: 3-ph 380-415 / 220-240 V  $\,$  50-60 Hz  $\,$ 

Dimensions: 420 x 250 x 420 mm

Weight: 85 kg



### **TF 1229 Contactor with Thermal Protection**

Enclosed in a plastic cover

Current: 16-24 A

For transformer TF 1226 and TF 1253 Dimensions: 142 x 115 x 112 mm

Weight: 1 kg



### **TF 1211 Emergency Stop**

Dimensions excluding the sign: 70 x 70 x 70 mm

Weight: 0.2 kg

Emergency sign in English enclosed

Other Power Distrubution Voltages are available in our programme. Please see our brochure "Power Distribution System and Furniture for Laboratories".



# **MV 1940 Measuring Instrument Trainer**



The Measuring Instrument Trainer MV 1940 is to show different principles to measure voltage and current. When you measure a value of current or voltage with help of the MV 1940 the different readout between DC average, true root mean square (TRMS) and rectified average is shown clearly and in a simple way.

The MV 1940 is also equipped with a stabilized DC power supply and a built in function generator with quadrant-, triangle- and sinus- voltage, and therefore measurements with RLC-circuits can be performed.

As the voltage measurers are isolated from the current measurers, voltage and current may be measured everywhere in a connected net.

Instruments indicates: True RMS, Rectified Mean Value and Momentary Values.

### **General data:**

Voltage Measurement:

Voltage input: AC, DC or range  $\pm 10$  V AC+DC.

Input impedance:  $100 \text{ k}\Omega$ . Band width: 50 kHz. Resolution: 0.01 V. Accuracy: 0.5% + 2 dgt.

Current Measurement:

Current input: AC, DC or range  $\pm 1A$  AC+DC.

 $\begin{array}{ll} \text{Input impedance:} & 0.1 \ \Omega. \\ \text{Band width:} & 50 \ \text{kHz.} \\ \text{Resolution:} & 0.01 \ \text{A.} \\ \text{Accuracy:} & 0.5\% + 2 \ \text{dgt.} \end{array}$ 

### **Function Generator:**

Frequency range: 20 - 1000 Hz.

Waveform: sinus, triangle and square.

Voltage range:  $\pm 10$  V. Current range:  $\pm 1$  A. Output impedance:  $0.005 \Omega$ .

Overcurrent protection.

DC offset voltage ±10 V.

Power supply: 220-240 V 1-ph, 50-60 Hz

Dim. 490 x 210 x 320 mm

Weight 8 kg



## **Example of an Electrical Machines Laboratory**



TERCO has delivered equipment to more than 65 different countries throughout the world.

## **Guarantee & Terms**

All overseas deliveries are dispatched in special, made to order wooden crates, extremely sturdy and damage resistant.

The guarantee is valid for 12 months from delivery and covers repair or exchange of parts, defective due to faulty design or workmanship at our factory. Detailed conditions of guarantee are specified in our Terms of Guarantee.

Spare parts for 2-5 years of normal operation can be offered on request.

Regular after-sales service is performed by the worldwide network of Terco representatives, along with the advice and support of our engineers.

Commissioning and training is normally offered separately. Special training can be arranged on request either in Sweden or on site.

Terco reserves the right to make changes in the design and modifications or improvements of the products at any time without incurring any obligations.

# **Terco Headoffice**



Terco headoffice and factory outside Stockholm, Sweden.



TERCO AB • P.O. Box 5014 • SE-14105 HUDDINGE – STOCKHOLM • SWEDEN Telephone: +46 8 506 855 00 • Telefax +46 8 506 855 01 • http://www.terco.se • e-mail export@terco.se