BAB I

PENDAHULUAN

A. Latar Belakang Masalah

Dunia industri saat iniberkembang sangat pesat, tidak hanya di negara-negara barat tetapi juga di Indonesia. Perkembangan yang pesat diantaranya diindikasikan oleh berdirinya banyak industri tekstil di berbagai kota di Indonesia, karena meningkatnya permintaan pasar. Kemajuan industri tekstil memberikan dampak positif dengan meningkatnya lapangan pekerjaan, serta dampak negatif bagi lingkungan berupa limbah zat warna yang dihasilkan. Limbah zat warna dapat mengurangi nilai estetika perairan serta menghalangi sinar matahari untuk menembus perairan yang dapat mengganggu proses fotosintesis dalam perairan. Limbah industri tekstil mengandung zat warna dengan kadar sekitar (20-30) mg/L serta sukar terurai secara alami sehingga dapat menyebabkan terganggunya ekosistem dalam air.

Penanganan limbah zat warna dalam air sangat rumit dan membutuhkan beberapa langkah sampai limbah tersebut benar-benar aman untuk dialirkan ke lingkungan. Limbah cair mengandung berbagai macam senyawa organik yang bersifat toksik, karsinogenik, dan mutagenik (Kasuma, 2012).

Salah satu zat warna tekstil bersifat bio-nondegradable umumnya terbuat dari senyawa azo dan turunannya yang merupakan senyawa benzena (Octavianti, et al. 2013). Zat warna yang sering digunakan pada industri tekstil ialah metilen biru dan metil orange yang merupakan senyawa aromatik hetersiklik kationik. Nilai ambang batas metilen biru dalam perairan adalah sekitar (5-10) mg/L.
Beberapa cara untuk menangani limbah zat warna sudah dilakukan, yaitu mulai dari metode yang sederhana (konvensional) seperti adsorbsi menggunakan karbon aktif atau zeolit hingga metode modern seperti biodegradasi, ozonisasi, klorinasi, radiasi pengion maupun teknologi plasma. Pada aplikasinya, metode konvensional kurang efektif digunakan, sedangkan metode modern tidak cukup efisien karena membutuhkan biaya operasional yang cukup tinggi (Dhamayanti, et al.2005).

Metode pengolahan limbah zat warna yang efektif dan murah sangat dibutuhkan. Metode tersebut dapat berupa teknologi yang mampu mempercepat penguraian limbah zat warnasecara simultan dengan fotodegradasi melalui proses fotokatalis. Fotokatalisis didefinisikan sebagai kombinasi proses fotokimia dan katalis, yaitu proses transformasi kimiamenggunakan foton sebagai sumber energi dan katalis sebagai pemercepat laju transformasi. Proses tersebut didasarkan pada kemampuan ganda suatu material semikonduktor (seperti TiO₂, ZnO, Fe₂O₃, CdS, ZnS) untuk menyerap foton dan melakukan reaksi transformasi antar muka material secara simultan (Slamet, 2012). Penggunaan fotokatalis memiliki kelebihan karena dapat memineralisasi total polutan organik termasuk limbah tekstil (senyawa azo), biaya penggunaannya murah dan prosesnya relatif cepat, tidak beracun dan memiliki kemampuan penggunaan jangka panjang (Dhamayanti, et al.2005) serta ramah lingkungan dan dapat dipakai ulang.

Beberapa material yang dapat digunakan sebagai fotokatalis pengolahan limbah umumnya merupakan semikonduktor, diantaranya TiO₂, WO₃, dan SnO₂. Pada penelitian ini dilakukan degradasi salah satu senyawa azo, yaitu metilen biru,
menggunakan semikonduktor timah oksida (SnO₂).

Timah oksida adalah salah satu bahan yang menarik untuk diselidiki belakangan ini. Hal ini dikarenakan timah oksida adalah semikonduktor tipe-n yang terkenal dengan celah pita yang lebar pada 3,6-3,8 eV (Asama, 2013). Penggunaan serbuk SnO₂ tidak cukup efektif dikarenakan energi celah pita nya yang besar serta kemampuannya yang hanya dapat bekerja pada daerah UV yang kelimpahannya sedikit di alam. Kemampuan fotokatalis timah oksida dapat ditingkatkan material pendukung yakni kobalt oksida. Kobalt oksida adalah semikonduktor tipe-p dengan celah pita optik pada 1,48 dan 2,19 eV (Patil, et al., 2012). Fotokatalis yang digunakan pada penelitian ini adalah kobalt oksida terdoping timah oksida, dengan rumus Snₓ₋₁ₓCoₓO₂. Pendopingan ini diharapkan dapat memperkecil energi celah pita dari SnO₂ sehingga kemampuan penyerapan spektrum sinar dapat bekerja pada sinar UV maupun sinar tampak yang berlimpah di alam dari sinar matahari.

Sampai saat ini, penelitian untuk mendapatkan katalis yang mempunyai aktivitas dan selektivitas kerja yang tinggi, stabilitas termal yang baik, dan umur katalis yang lama. Namun demikian, penggunaan katalis dalam waktu yang lama dan berulang-ulang akan menjadikan katalis terdeaktivasi. Deaktivasi katalis dapat disebabkan oleh kerusakan situs aktif karena pengaruh temperatur yang tinggi, terbentuknya kokas yang menutupi permukaan situs aktif katalis, dan terjadinya peracunan oleh senyawa yang mengandung unsur-unsur golongan VA, golongan VIA, dan beberapa senyawa yang memiliki gugus fungsional –C=O dan–C≡N (Rodiansono & Trisunaryaanti, 2005) yang kesemuanya akan menurunkan stabilitas, selektivitas dan aktivitas katalis. Deaktivasi menjadi penting untuk dilakukan
karena hal ini berdampak besar pada suplai kebutuhan katalis. Semakin cepat katalis terdeaktivasi maka dibutuhkan waktu dan biaya yang semakin besar untuk mengaktifkan kembali (diregenerasi) (Trisunaryanti, et al., 2002).

Dalam penelitian ini dipelajari pengaruh kadar Kobalt dalam Sn$_{1-x}$Co$_x$O$_2$ terhadap efektivitas fotodegradasi zat warna metilen biru dalam uji aktivitas fotokatalis pada sinar UV dan sinar tampak, serta regenerasi fotokatalis Sn$_{1-x}$Co$_x$O$_2$ setelah digunakan pada proses degradasi senyawa metilen biru untuk mengetahui efisiensi dari penggunaan kembali fotokatalis Sn$_{1-x}$Co$_x$O$_2$.

B. Identifikasi Masalah

Berdasarkan latar belakang di atas, maka diambil identifikasi masalah sebagai berikut:

1. Varisi konsentrasi Co yang didopingkan pada senyawa SnO$_2$.
2. Metode karakterisasi Sn$_{1-x}$Co$_x$O$_2$.
3. Aktivitas senyawa Sn$_{1-x}$Co$_x$O$_2$ pada proses degradasi polutan organik.
4. Sumber sinar yang digunakan pada proses degradasi polutan organik.
5. Laju reaksi degradasi polutan organik dengan katalis Sn$_{1-x}$Co$_x$O$_2$.
6. Regenerasi katalis Sn$_{1-x}$Co$_x$O$_2$.
7. Deaktivasi katalis Sn$_{1-x}$Co$_x$O$_2$.

C. Pembatasan Masalah

Agar penelitian ini tidak meluas dalam pembahasannya, maka di ambil pembatasan masalah sebagai berikut:

1. Karakter senyawa Sn$_{1-x}$Co$_x$O$_2$.
2. Aktivitas katalis dan kinetika reaksi degradasi metilen biru dengan katalis Sn$_{1-x}$Co$_x$O$_2$ di bawah sinar UV dan sinar tampak.

3. Aktivitas katalis Sn$_{1-x}$Co$_x$O$_2$ hasil regenerasi pada reaksi degradasi metilen biru.

D. Perumusan Masalah

Dari uraian di atas, untuk mempermudah pembahasan, maka dapat dibuat rumusan masalah sebagai berikut:

1. Bagaimana karakter senyawa Sn$_{1-x}$Co$_x$O$_2$ yang dihasilkan?

2. Bagaimanakah aktivitas katalis dan kinetika reaksi degradasi metilen biru dengan katalis Sn$_{1-x}$Co$_x$O$_2$ di bawah sinar UV dan sinar tampak?

3. Bagaimana aktivitas katalis Sn$_{1-x}$Co$_x$O$_2$ hasil regenerasi pada reaksi degradasi metilen biru?

E. Tujuan Penelitian

Berdasarkan rumusan di atas, maka tujuan penelitian ini adalah:

1. Mengetahui karakter senyawa Sn$_{1-x}$Co$_x$O$_2$ yang dihasilkan.

2. Mengetahui aktivitas katalis dan kinetika reaksi degradasi metilen biru dengan katalis Sn$_{1-x}$Co$_x$O$_2$ di bawah sinar UV dan sinar tampak.

3. Mengetahui aktivitas katalis Sn$_{1-x}$Co$_x$O$_2$ hasil regenerasi pada reaksi degradasi metilen biru.

5
F. Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan beberapa manfaat diantaranya:

1. Memberikan informasi mengenai salah satu cara pengolahan limbah zat warna metilen biru dengan memanfaatkan fotokatalis kobalt oksida terdoping timah oksida (Sn$_{1-x}$Co$_x$O$_2$).

2. Memberikan alternatif baru dalam metode pengolahan limbah terutama polutan zat warna yang efektif dan efisien.

3. Memberikan kontribusi dalam pengembangan ilmu pengetahuan dan teknologi tentang material fotokatalis yang diharapkan mampu diaplikasikan dalam bidang lingkungan dan energi terbarukan.