The Properties of Fuzzy Green Relations on Bilinear Form Semigroups

Karyati
Agus Maman Abadi
Department of Mathematics Education, Yogyakarta State University
Yogyakarta, Indonesia
Email: karyati@uny.ac.id, jengkarun@gmail.com

Abstract—The Green relations on semigroups have been introduced by Howie [3]. They are right Green relation \(R \), left Green relation \(L \) and (two sided) Green relation \(I \). The right Green relation \(R \) is defined as \(\{(x,y) \in S \times S|\langle x \rangle_R = \langle y \rangle_R\} \), with \(\langle x \rangle_R \) denotes the right ideal generated by an element \(x \) (or called the principle right ideal generated by \(x \)). The definition of the left Green relation \(L \) and the Green relation \(I \) are similar to the definition of the right Green relation. In this paper we will construct the definition of the fuzzy right Green relation (denoted by \(R^f \)), the fuzzy left Green relation (denoted by \(L^f \)) and the fuzzy Green relation (denoted by \(I^f \)) on a semigroup. First we define a fuzzy ideal (right/left) generated by a fuzzy subset (a fuzzy principle ideal) on a semigroup and their examples. Based on the fuzzy principle ideal definition, we define a fuzzy (right/left) Green relation on a semigroup. The fuzzy subset \(\mu \) and \(\rho \) are fuzzy (right/left) Green related if and only if the fuzzy (right/left) ideal generated by \(\mu \) is equal to the fuzzy (right/left) ideal generated by \(\rho \).

Keywords—Green relation, fuzzy ideal, fuzzy principal ideal, fuzzy Green relation

I. Introduction

A non empty subset \(I \) of a semigroup \(S \) is called a right (left) ideal if \(IS \subseteq I \) (SI \(\subseteq I \)) and an ideal (two sided) if \(I \) is both a right ideal and a left ideal. The right (left) ideal generated by \(x \in S \) is denoted by \(\langle x \rangle_R \) (\(\langle x \rangle_L \)) and an ideal generated by \(x \in S \) is denoted by \(\langle x \rangle \). The Green relation on a semigroup has been introduced by Howie [3]. They are right Green relation \(R \), the left Green relation \(L \) and the Green relation \(I \). The Green relation \(R, L, I \) are equivalence relations, defined as follow:

\[
R = \{(x,y) \in S \times S|\langle x \rangle_R = \langle y \rangle_R\}
\]

\[
L = \{(x,y) \in S \times S|\langle x \rangle_L = \langle y \rangle_L\}
\]

\[
I = \{(x,y) \in S \times S|\langle x \rangle = \langle y \rangle\}
\]

Some papers related to the fuzzy ideal of semigroups, the fuzzy ideal of semigroups generated by a fuzzy singleton and their properties have been introduced by Karyati [5]. In this paper we will discuss how to define the fuzzy Green relations on a semigroup based on the fuzzy (right/left) ideal generated by a fuzzy subset of this semigroup.

II. Fuzzy Green Relations on Semigroup

Refer to Asaad [2], Kandasamy [4], Mordeson and Malik [7], a fuzzy subsemigroup \(\mu \) of a semigroup \(S \) is defined as a mapping from \(S \) into the interval [0,1], i.e. \(\mu:S \rightarrow [0,1] \) which fulfills the condition \(\mu(xy) \geq \min\{\mu(x),\mu(y)\} \) for all \(x, y \in S \). A fuzzy subset \(\mu \) is called a fuzzy right (fuzzy left) ideal of \(S \) if \(\mu(x) \geq \mu \) for every \(x, y \in S \) then \(\mu(xy) \geq \mu(x)(\mu(xy) \geq \mu(x)) \) and \(\mu \) is called fuzzy ideal of \(S \) if \(\mu(x) \) is both a fuzzy right ideal and a fuzzy left ideal, i.e. \(\mu(xy) \geq \max\{\mu(x),\mu(y)\} \) for all \(x, y \in S \). Fuzzy subsets \(\lambda \) and \(\mu \) are called \(\lambda \subseteq \mu \) if and only if \(\lambda(x) \leq \mu(x) \) for every \(x, y \in S \). A fuzzy relation \(\theta \) of \(S \) is defined as a mapping from \(S \times S \) into the closed interval [0,1].

Definition 2.1. ([1], [6], [9]) Let \(S \) be a semigroup and \(\mu \) be a fuzzy relation on \(S \). Then

1. A fuzzy relation \(\mu \) on \(S \) is said to be reflexive if \(\mu(x,x) = 1 \) for all \(x \in S \)
2. A fuzzy relation \(\mu \) on \(S \) is said to be symmetric if \(\mu(x,y) = \mu(y,x) \) for all \(x, y \in S \)
3. If \(\mu_1 = \mu_2 \) are two relations on \(S \), then their max-product composition denoted by \(\mu_1 \circ \mu_2 \) is defined as \(\mu_1 \circ \mu_2(x,y) = \max_{z \in S}\{\mu_1(x,z), \mu_2(z,y)\} \)
4. If \(\mu_1 = \mu_2 = \mu \) and \(\mu \circ \mu \leq \mu \), then the fuzzy relation \(\mu \) is called transitive.

Refer to Aktas [1], Kuroki [6], and Murali [9], we give some kinds of relations defined as follow: