GRAMMATICAL ERRORS IN BILINGUAL MATHEMATICS MEDIA FOR GRADE EIGHT STUDENTS DEVELOPED BY THE DIRECTORATE OF DEVELOPMENT OF JUNIOR HIGH SCHOOL, DIRECTORATE GENERAL OF MANAGEMENT OF BASIC AND JUNIOR EDUCATION, MINISTRY OF NATIONAL EDUCATION AND CULTURE

A THESIS

Presented as a Partial Fulfillment of the Requirements for the Attainment of a *Sarjana Pendidikan* Degree in English Education Program

BY: BERLIAN ADITYAS UTAMI 05202241056

ENGLISH EDUCATION DEPARTMENT LANGUAGE AND ART FACULTY YOGYAKARTA STATE UNIVERSITY 2012

APPROVAL

Grammatical Errors in Bilingual Mathematics Media for Grade Eight Students Developed by the Directorate of Development of Junior High School, Directorate General of Management of Basic and Junior Education, Ministry of National Education and Culture

First Consultant,

Second Consultant,

Suhaini M. Saleh, M. A.

NIP. 19540120 197903 1 002

Nunik Sugesti, M. Hum.

NIP. 19710616 200604 2 001

RATIFICATION

Grammatical Errors in Bilingual Mathematics Media for Grade Eight Students Developed by the Directorate of Development of Junior High School, Directorate General of Management of Basic and Junior Education, Ministry of National Education and Culture

A Thesis

Accepted by the Board of Thesis Examiners of Faculty of Languages and Arts, State University of Yogyakarta on July 11, 2011 and declared to have fulfilled the requirement to acquire a Sarjana Pendidikan Degree in English Literature

Board of Examiners

Chairperson : Jamilah, M. Pd.

Secretary : Nunik Sugesti, M.Hum.

First Examiner : Suharso, M. Pd.

Second Examiner : Suhaini M. Saleh, M. A

Yogyakarta, 13th of January, 2012

Faculty of Languages and Arts

State University of Yogyakarta

Dean,

550505 198011 1 001

PERNYATAAN

Yang bertanda tangan di bawah ini saya:

Nama

: Berlian Adityas Utami

NIM

: 05202241056

Program Studi

: Pendidikan Bahasa Inggris

Fakultas

: Bahasa dan Seni

Judul Karya Ilmiah

: GRAMMATICAL ERRORS IN BILINGUAL MATHEMATICS MEDIA FOR GRADE EIGHT STUDENTS DEVELOPED BY THE

DIRECTORATE OF DEVELOPMENT OF JUNIOR HIGH

SCHOOL, DIRECTORATE GENERAL OF MANAGEMENT OF BASIC AND JUNIOR EDUCATION, MINISTRY OF NATIONAL

EDUCATION AND CULTURE

menyatakan bahwa karya ilmiah ini adalah hasil pekerjaan saya sendiri. Sepanjang pengetahuan saya, karya ilmiah ini tidak berisi materi yang ditulis orang lain, kecuali bagian-bagian tertentu yang saya ambil sebagai acuan dengan mengikuti tata cara dan etika penulisan karya ilmiah yang lazim.

Apabila terbukti bahwa pernyataan ini tidak benar, sepenuhnya menjadi tanggung jawab saya.

Berlian Adityas Utami

MOTTOT

Forever is composed of nows

£mily Dickinson

The way I see it, if you want a rainbow, you gotta put up with rain

Dolly Parton

To Mama and Papa,

And everyone who has been expecting this from me,

With Sove.

ACKNOWLEDGEMENTS

Alhamdulillahirobbil'alamin, all praise be to God, for the life and all that it brings. Having accomplished this thesis, I feel indebted to many people who helped and inspired me during the making of this thesis.

I would like to express my deepest gratitude to my advisors, Suhaini M. Saleh, M.A, as my first advisor and Nunik Sugesti, M. Hum., as my second advisor for their advice and willingness of sharing their brilliant thoughts with me, which were very fruitful for shaping up my ideas of this research. Many thanks go to the lectures of English Department, from whom I gain my knowledge and experience, also to the library staff of faculty of Languages and Arts.

Countless thanks also go to my family and friends for their support, without which I will never be able to finish this thesis. I always feel their love in their millions of prayers. I feel very lucky for having my mother and father since they are the ones who always believe that I can do what I do and believe that I can do what I do well. They are more than I can wish for for a family.

I am giving my best to this thesis, but it is far from being perfect.

Therefore, I would accept any suggestions and criticism for the betterment of this thesis.

Yogyakarta, January 2012

Berlian Adityas Utami

TABLE OF CONTENTS

TITLE	
APPROVAL	ii
RATIFICATION	ii
PERNYATAAN	iv
MOTTOS	
DEDICATIONS	V i
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xii
ABSTRACT	xiv
CHAPTER I. INTRODUCTION	1
A. Background of the Research	1
B. Identification of the Research	3
C. Limitation of the Research	5
D. Formulation of the Research	5
E. Objectives of the Research	5
F. Significance of the Research	6
CHAPTER II. LITERATURE REVIEW AND	
ANALYTICAL CONSTRUCT	5
A. Literature Review	
English as an International Language	
1. English as an international Language	c
2. English Grammar	8
3. Morphology	13
4. Syntax	14
5. English for Specific Purposes	16

	6.	Error Analysis	. 19
	7.	Errors and Mistakes	. 22
	8.	Teaching Materials	. 32
	9.	About the Description of Mathematics Bilingual Media for	ſ
		Grade Eight Developed by the Directorate of Development of	f
		Junior High School, Directorate General of Management of	f
		Basic and Junior Education, Ministry of National Education	. 34
В.	. Re	levant Studies	. 34
C.	nceptual Framework and Analytical Construct	.35	
	1.	Conceptual Framework	.35
	2.	Analytical Construct	.36
СНАР	TE	R III. RESEARCH METHOD	. 38
A.	Ту	pe of Research	. 38
B.	Da	ta Type	. 38
C.	Da	ta Collection	. 39
D.	Da	ta Sources	. 39
E.	Re	search Instruments	. 39
F.	F. Data Analysis		
G.	Tr	ustworthiness	.40
СНАР	TE	R IV. FINDINGS AND DISCUSSION	.41
A.	De	escriptive Findings and Valuings	.41
	1.	The Description of Errors Occurring in Mathematics Bilingual	
		Media	.41
		a. Overt Errors Occuring in the Media	. 42
		b. Covert Errors occuring in the Media	. 43
	2.	The Description of Causes and Corrections of the Errors	. 44
		a Causes of the Errors	44

		b.	Corrections for the Errors	. 45
В.	Th	e Ex	xplanatory Findings and Description	. 45
	1.	Ov	ert Errors Occurring in the Media	. 45
		a.	Omission in Morphology	. 46
		b.	Omission in Lexicon	.46
		c.	Omission in Syntax	.47
		d.	Addition in Morphology	.47
		e.	Addition in Lexicon	.48
		f.	Addition in Syntax	.49
		g.	Selection in Morphology	.49
		h.	Selection in Lexicon	.49
		i.	Selection in Syntax	. 50
		j.	Ordering in Morphology	. 50
		k.	Ordering in Lexicon	. 50
		1.	Ordering in Syntax	.51
	Covert Errors Occurring in the Media			
		a.	Omission in Morphology	.51
		b.	Omission in Lexicon	.51
		c.	Addition in Morphology	. 52
		d.	Addition in Lexicon	. 52
		e.	Addition in Syntax	. 52
		f.	Selection in Lexicon	. 53
		g.	Selection in Syntax	. 53
		h.	Ordering in Morphology	. 53
		i.	Ordering in Lexicon	. 54
		j.	Ordering in Syntax	. 54
	3.	En	rors Not Occurring in the Media	. 55
	4.	Th	e Causes of Errors in the Media	. 55
		a.	Interlanguage	. 56
		b.	Intralanguage	. 56

		c.	Communication Strategies	57
			1) Cognitive and Personality Style	57
			2) Language Switch	57
	5.	Coı	rreting Errors Found in the Media	58
		a.	Correcting Omission Errors	58
		b.	Correcting Addition Errors	59
		c.	Correcting Selection Errors	59
		d.	Correcting Ordering Errors	59
		e.	Correcting Errors Caused by Interlanguage Transfer	60
		f.	Correcting Errors Caused by Intralanguage Transfer	61
		g.	Correcting Errors Caused by Cognitive and Personality	
			Style	62
		h.	Correcting Errors Caused by Language Switch	62
	6.	Fur	ther Discussions on the Errors Found in the Media	63
		a.	Omission Overt Errors in the Media	64
		b.	Addition Overt Errors in the Media	65
		c.	Selection Overt Errors in the Media	66
		d.	Ordering Overt Errors in the Media	67
		e.	Omission Covert Errors in the Media	68
		f.	Addition Covert Errors in the Media	69
		g.	Selection Covert Errors in the Media	69
		h.	Ordering Covert Errors in the Media	70
СНАР	TEF	RV.	CONCLUSION AND SUGGESTIONS71	
A.	Co	nclu	sion	72
B.	Sug	gges	tions	74
	1.	For	the Media Developer	74
	2.	For	the Teachers	74
	3.	For	the Other Researchers	74

BIBLIOGRAPHY.	 76
APPENDIX	 80

LIST OF TABLES

Table 1. Errors Occurring in the Media	41
Table 2. Overt Errors Occurring in the Media	42
Table 3. Covert Errors Occurring in the Media	43
Table 4. Causes of Errors	45

LIST OF ABRREVIATION

M : in Morphology

L : in Lexicon

S : in Syntax

Inter : Interlingual Transfer

Intra : Intralingual Transfer

Cont : Context of Learning

Av : Avoidance

Pr : Prefabricated Pattern

Co : Cognitive and Personality Style

Ap : Appeal to Authority

La : Language Switch

GRAMMATICAL ERRORS IN BILINGUAL MATHEMATICS MEDIA FOR GRADE EIGHT STUDENTS DEVELOPED BY THE DIRECTORATE OF DEVELOPMENT OF JUNIOR HIGH SCHOOL, DIRECTORATE GENERAL OF MANAGEMENT OF BASIC AND JUNIOR EDUCATION, MINISTRY OF NATIONAL EDUCATION AND CULTURE

By

Berlian Adityas Utami

05202241056

ABSTRACT

This research revealed the grammatical errors found in bilingual mathematics media developed by The Directorate of Development of Junior High School, Directorate General of Management of Basic And Junior Education, Ministry of National Education and Culture. It focused on: 1) the classifications of errors found in the media; 2) the causes of errors found in the media; and 3) the corrections of the errors found in the media.

This research used both qualitative and quantitative methods in analyzing the qualitative data. The data were sentences taken from the media. The data were analyzed to classify the types of errors, determine the causes of errors, and correct the errors found.

The findings of this research were 1) The errors in the media were classified into omission overt error in: morphology, lexicon, and syntax; addition overt error in: morphology, lexicon, and syntax; selection overt error in morphology, lexicon, and syntax; ordering overt error in morphology, lexicon, and syntax; omission covert error in morphology and lexicon; addition covert error in morphology, lexicon, and syntax; selection covert error in lexicon and syntax; ordering covert error in morphology, lexicon, and syntax; 2) The causes of the errors were interlingual transfer, intralingual transfer, cognitive and personality style, and language switch; and 3) Some corrections were needed for the types of errors found; Omission errors needed addition of missing elements, addition errors needed elimination of unnecessary items, selection errors needed correct selection of the incorrect elements, and ordering errors needed the elements to be re-ordered and or revised. Errors caused by intralingual needed to translated into Bahasa Indonesia before correction, errors caused by interlingual needed to be corrected using the correct grammar rule, errors caused by cognitive and personality syle needed to be checked, and errors caused by language switch needed to be translated into English.

Key words: Grammatical Error, Error Analysis, Bilingual media

CHAPTER I

INTRODUCTION

A. Background of the Research

The government of Indonesia has always been making efforts to improve the national education quality. In 2003, the government issued the Regulation of Ministry of National Education and Culture on the National Education System. It is mentioned in the Regulation Number 20 Act 50 that the central government and or regional government should run at least one educational unit of each educational level to be that of international standard. The medium of instruction in international standard schools should be English and the international standard schools should employ Information and Communication Technology (ICT) in the teaching and learning process. Hence, the phenomenon of using bilingual media and computerization in the teaching and learning process has become a new trend in the educational field in Indonesia.

The implication to the policy of International Standard School has made the role of English teachers not merely as teachers who teach the language to students in the classroom. They have to be prepared with a skill as the counselor when teachers of other subjects find difficulties with their English. They are the ones who should answer other teachers' questions upon the introductory language in the classroom, the media and source of learning used, and so forth, regardless of some English training conducted for teachers. Therefore, English teachers and teacher students of English should have an idea upon English used

in other subjects. However, their knowledge is relatively limited since they are not engaged with English used in other subjects.

The Directorate of Development of Junior High School of the Directorate General of Management of Basic and Junior Education, Ministry of National Education and Culture, as the highest department of education for junior high schools in Indonesia, has developed bilingual media to support the policy of international standard school. The media developed are media for science subjects, including mathematics. The science and mathematics are subjects of which junior high school students are required to master in order to pass the national examination in Bahasa Indonesia as well as the international examination in English. The media are developed using flash player which enable students to grasp the lesson through animations, illustrations, and spoken explanation in Bahasa Indonesia as well as English. The media also facilitate students with self-learning access. However, before they are applied in junior high schools, some researches have to be done to evaluate the media.

One of the concerns of the bilingual media developed by the Directorate of Development of Junior High School is the use of English. Since it uses both spoken and written expression of English, it is necessary to make sure that the English used in the media is accurate. The English accuracy in the media can be seen from the use of correct grammar and pronunciation. The correct grammar and pronunciation are essential since the media will model the use of natural English to the students. Towards that extend, the researcher feels that it is

important to analyze and evaluate the English used in the media especially in relation with the grammar used.

This research is a descriptive research. The descriptive analysis will describe the problems in the field without testing any hypotheses. Once the data collected, a qualitative analysis is employed in analyzing the qualitative data gathered using some valid, reliable instruments.

B. Identification of the Problem

There has been no research conducted upon the media developed by the Directorate of Development of Junior High School. The study is essential in order to evaluate the appropriateness and feasibility of the media when applied in schools. There are some aspects, which need to be analyzed from the bilingual media. The aspects cover the content aspect and performance aspect. The content aspect is the aspect that deals with the content in the media such as the materials and the language used. The performance aspect deals with the technology applied and how effective the media works when it is run.

Firstly, the content has matter aspect and linguistics aspect, which need to be evaluated. Matter consists of basic competence, materials, lesson, and activities. It is necessary to analyze whether they are appropriately developed and suitable in classroom teaching and learning process. Until a literature research is conducted, this question cannot be answered. The linguistic aspect of the media is presented in Bahasa Indonesia and English. The linguistic aspect concerns the use of grammar, pronunciation, and the translation of the first language (Bahasa

Indonesia) into the second language (English). English has become a concern since it has to be accurately as well as naturally employed in the media to model the students. Since there has been no analysis conducted, the linguistic aspect in the media is still questionable.

There are some errors occuring in the use of English in the bilingual media developed by the Directorate of Development of Junior High School. First, the media lacks of grammar accuracy. The errors cover the incorrect choice of phrase and the incorrect punctuation. The incorrect phrases have no meaning in English and the incorrect punctuation causes ambiguity. Second, there are some words which are pronounced incorrectly. Third, the English version of the media is merely the translation from the Bahasa Indonesia version so that it lacks of naturalness.

Secondly, the evaluation of the performance of the media is determined by experimental research conducted upon the media. It is necessary to apply the media in a real classroom to see the feasibility of the media. The result of the research will be a reference to develop a more suitable technology and statistical data which can be used to measure the effectiveness of the media. The technology applied also needs to be adapted to the students' ability so that they don't find any difficulties using the media but still find it challenging. The problems in technology are mainly about the sounds produced by the media. The dubbing is not the same as the running text in some parts. The speed of the speech is sometimes not natural due to the duration of the animation.

C. Limitation of the Problem

The researcher chose mathematics media for grade eight students of junior high school developed by the Directorate of Development of Junior High School to be analyzed. Due to the researcher's knowledge, time, and ability, this research was limited to the linguistics aspect of the media. It focused on the errors in writing expressions of English in the mathematics media in terms of morphology, lexicon, and syntax.

D. Formulation of the Problem

Based on the limitation and consideration that it is essential to conduct an analysis upon the linguistics aspect of the media, this research attempts to answer following questions:

- 1. What are the classifications of errors found in the media?
- 2. What are the causes of the errors?
- 3. How can the errors be corrected?

E. Objectives of the Research

In line with the formulation of the problems, this research is aimed at:

- 1. describing the classifications of errors found in the media,
- 2. describing the causes of errors, and
- 3. providing the corrections for the errors.

F. Significance of the Research

There are some benefits expected to be achieved from this research:

1. Academically

- a. The research findings can be used as a reference to conduct further analysis upon media developed by the Directorate of Development of Junior High School and its implementation.
- b. The research findings can be resulted in one of the considerations to improve the linguistics aspect of the media.
- c. The research findings can provide information and aid for the students of the English Education Department who have the same interest in the subject of study of grammar.
- d. The result of this research can be a helpful insight to the study of English grammar, particularly when it is used in mathematics bilingual media.
- e. This research can promote the study of bilingual media which is compulsory in teaching in international standard schools.

2. Practically

This research is conducted to enrich the English teacher students' knowledge in particular and the reader's knowledge in general upon English grammatical accuracy. When one acquires a good knowledge of English grammatical accuracy, one will be able to use English in formal occasions such as in the classroom, and to produce English texts for academic purposes.

CHAPTER II

LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK

A. Literature Review

This chapter discusses some theories or literatures that support the study. They will be presented and discussed before conceptual framework for this research drawn.

1. English as an International Language

English has achieved a prestigious place as an International language not only through voyages of expedition thousands of years ago but also because of the economic development in the twentieth centuries along with the power of media (Crystal, 2000: 24-25). With regards to English as International language (EIL) McKay in Seidlhofer (2003: 8) points out that International English is used by native speakers of English and bilingual users of English for cross-cultural communication. International English can be used both in a local sense between speakers of diverse cultures and languages within one country and in a global sense between speakers from different countries.

There are two important issues of English as an international language which are delivered by Brown (2000). The issues are (1) English is increasingly being used as a tool for interaction among nonnative speakers. Well over one half of the one billion English speakers of the world learned English as a second (or foreign) language. Most English language teachers across the globe are nonnative English speakers, which

means that the norm is not monolingualism, but bilingualism. (2) English is not frequently learned as a tool for understanding and teaching US or British cultural values. Instead, English has become a tool for international communication in transportation, commerce, banking, tourism, technology, diplomacy, and scientific research.

It is clear that English is an international language spoken by almost everyone in every country for many purposes. Since English is used widely, bilingualism is a further phenomenon after the phenomenon of English as an international language.

2. English Grammar

Some experts have tried to define what language is. According to Hornby (1995) language is the system of sounds and words used by humans to express their thoughts and feelings. It is also the words and phrases used by a particular group or profession. It means that a language is a kind of system possessed and used by some particular communities in order to communicate and share ideas to one another. Under the influence of Zellig Harris and Noam Chomsky, many linguists have argued that a grammar is a system of rules.

Eggins (2004: 3) says that language is a semiotic system. Its function is to make meanings by involving sets of meaningful choices and oppositions. She also says that the process of using a language is called a semiotic process. Like other semiotic system, language involves two aspects: content (meaning) and representation (expression). As a semiotic

system, language can be called a complex semiotic system since, unlike most simple semiotic systems which consist of two levels or strata; it needs three levels or strata to describe the language itself. First, meanings are realized through wordings. Then, wordings are realized again through phonology or graphology. Third, language has a special level, the so-called lexicogrammar that makes it possible to create potential unlimited numbers of expression (Eggins, 2004: 116). To create them, the lexicogrammar provides the means; they are words and structures, or the arrangements of these words.

Finch (2000) argues that the grammar of a language consists of a set of rules which native speakers intuitively follow in the production of well-formed construction. The linguistic rules are internal, as opposed to external constraints and, as such, unconsciously present in the mind of native speakers. They are better understood as principles by which the language operates. Having said that, however, he explains further that 'grammar' is a word which is open to a number of different uses and interpretations.

The sounds and sound patterns, the basic units of meaning, such as words, and the rules to combine them to form new sentences constitute the grammar of a language. The grammar, then, is what we know; it represents our linguistics competence. To understand the nature of a language we must understand the nature of this internalized, unconscious set of rules, which is a part of every grammar of every language (Fromkin: 1983).

The notion of grammar according to Fromkin refers to descriptive and perscriptive grammar. She explained that although there may be some differences among speakers' knowledge of a language, there must be shared language because it is this grammar that makes it possible to communicate through language. To the extent that the linguist's description is a true model of a speaker's linguistic capacity, it will be a successful description of the grammar and the language itself. Such a model is called a descriptive grammar. Furthermore, she explains that descriptive grammar describes basic linguistic knowledge. It explains one's ability to speak and understand, and tells what one knows about the sounds, words, phrases, and sentences of one's language. Meanwhile, numerous English grammarians from the eighteenth and nineteenth centuries wished to prescribe grammar, which gives birth to prescriptive grammar. Its goal is to tell people the rules they have to know rather than to describe the rules that they know. When we say that a sentence is grammatical, we mean that it conforms to the rules of both grammars; conversely, an ungrammatical sentence deviates in some way from these rules.

Halliday (1985) defines a system in viewing grammar as a function, called systemic functional grammar. The conceptual framework is that it is based on a function one rather than the formal one. It is functional in three distinct senses: in its interpretations of texts, of the system, and of the elements of linguistic structures.

Following this, the theory is defined in three senses. Firstly, it is functional in the sense that it is designed to account for how the language is used. Every text unfolds in some context of use. A functional grammar is essentially a 'natural grammar', in the sense that everything in it can be explained by reference to how the language is used. Secondly, the fundamental components of meaning in language are functional components. All languages are operated by two kinds of meaning, the ideational or 'reflective' meaning and the interpersonal or 'active' meaning. These components called 'metafunction' are the manifestations in the linguistic system of the two very general purposes which underlie all uses of language: to understand the environment (ideational) and to act on the others in it (interpersonal). Thirdly, the each element in a language is explained by reference to its function in the total linguistic system. In this third sense, a functional grammar is one that construes all the units of a language—clauses, phrases, and so on—as organic configuration of functions. in other words, each part is interpreted as functional with respect to the whole. The stages of coding process from meaning to expression are semantics, grammar (syntax), and phonology (Halliday, 1985)

VanVallin and LaPolla in Purpura (2004: 5-6) argue that most linguists have embraced one of two general perspectives to describe linguistic phenomena. Either they take a syntactocentric perspective of language, where syntax is the central feature to be observed and analyzed,

or they adopt a communication perspective of language, where the observational and analytic emphasis is on how language is used to convey meaning. In the syntactocentric view of language, formal grammar is defined as a systematic way of accounting for and predicting an 'ideal' speaker's or hearer's knowledge of a language. This is done by a set of rules or 'principles' that can be used to generate all well-formed or grammatical utterances in the language. Syntactocentric theories of language have provided L2 educators with wealth information about grammatical forms and the rules that govern them. In fact, most classroom language teachers draw extensively on this information as a basis for syllabus design, material preparation, instruction, and classroom assessment. These theories have also informed L2 teachers and testers in their efforts to identify linguistic content for tests so that more general inferences about language ability can be made (Purpura, 2004: 6).

Moreover, Finch (2000) argues that knowing the grammar of a language means knowing two basic things about it: first, what changes are required to individual words according to the way in which they are used, termed morphology, and second, the rules governing the combination of words into phrases, clauses, and sentences (Finch, 2000: 78). The study is called syntax.

3. Morphology

Morphology can be defined as "a branch of linguistics concerned with analyzing the structure of words. The morphology of a given word is its structure or form" (Baldick, 2001). A word is considered to be made of smaller unites called morphemes that can carry a meaning or a grammatical function. There are two kinds of morphemes, free morphemes and bound morphemes. (1) A free morpheme can stand by itself as a single word, for example, man, walk, and; whereas a (2) bound morpheme cannot normally stand alone such as the plural —s in workers. Free morphemes are classified into (a) lexical morphemes such as ordinary nouns, adjectives and verbs and (b) functional morphemes such as conjunctions, prepositions, articles and pronouns. Bound morphemes are subcategorized into derivational and inflectional (Yule, 2004).

The term lexical item is introduced by McCarthy (2002) as words that have meanings that are unpredictable and so must be listed in dictionaries. A word need not be a lexical item. There are some words that are not isted in dictionaries. In his book, McCarthy gives an illustrations from some sentences:

- (1) This pianist performs in the local hall every week.
- (2) Mary told us that this pianist performed in the local hall every week.
- (3) The performance last week was particularly impressive.

All these words contain a suffix: *perform-s, perform-ed,* and *perform-ance*. However, the suffixes *-s* and *-ed* are dependent on a grammatical context in a way that the suffix *-ance* is not.

Futhermore, Norman Segalowiz (2003) have suggested that during second language acquisition, "learners have to pay attention at first to any aspect of the language that they are trying to understand or produce by using cognitive resources to process information". However, Lightbown and Spada have argued that there is a limitation to the amount of information a learner can pay attention to. That is, while learners at the earliest stage concentrate more on understanding the main words of the message, they may not pay attention to the grammatical morphemes attached to some of the words that do not affect the meaning. Consequently, with practice, those words become automatically used by the learners.

4. Syntax

Chomsky in Fromkin (2000) says that the grammar of the language determines the properties of each of the sentences of the language. The language is a set of sentences that are described by the grammar. The grammar 'generates' the sentences it describes and their structural description. When we speak of the linguist's grammar as a 'generative grammar', we mean only that it is sufficiently explicit to determine how sentences of the language are in fact characterized by the grammar.

This explanation shows that Chomsky views grammar as a structural description. Fromkin adds that knowing a language includes the ability to put words together to form phrases and sentences that express our thoughts. This would require one's knowledge upon structure of the sentence and words order. It is acknowledged that word order might change the meaning of a sentence, for example

Salome danced for Herod.

does not have the same meaning as

Herod danced for Salome.

The study of syntax reflects speaker's knowledge of these facts.

In English and in every language, every sentence is a sequence of words, but not every sequence of words is a sentence. Sequences of words that conform to the role of syntax are said to be well formed or grammatical and those which violate the syntactic rules are therefore ill formed and ungrammatical (Fromkin, 1983).

Moreover, Fromkin defines that a sentence is syntactically wellformed when it is at lest account for:

- 1. the grammatically of sentence
- 2. word order
- 3. structural ambiguity
- 4. the meaning relation between words in a sentence
- 5. the similarity of meaning of sentences with different structures

speaker's creative ability to produce and understand any of an infinite set of possible sentences and is represented by a 'tree diagram' explaining the deep structure of a sentence, which refer to the deep analysis of structure despite the surface structure or the structure which is represented in the sentence.

The sentence is, then, classified in Noun (N) and Verb (V). The classification can be in the form of phrases of Noun Phrase (NP) and Verb Phrase. The syntactical rules of this 'diagramming" has three aspects of speaker's syntactic knowledge of sentence structure and are disclosed in phase structure trees:

- 1. the linear order of the words in the sentence
- 2. the groupings of words into syntactic categories
- 3. the hierarchical structure of the syntactic categories (e.g. a sentence is made up of a Noun Phrase followed by a Verb Phrase, a verb Phrase may be composed of a Verb followed by a Noun Phrase, and so on).

5. English for Specific Purposes

Notably, there are three reasons common to the emergence of all ESP: the demands of a Brave New World, a revolution in linguistics, and focus on the learner (Hutchinson & Waters, 1987).

Strevens defines ESP by identifying its absolute and variable characteristics. Strevens' definition (1988) makes a distinction between four absolute and two variable characteristics:

I. Absolute characteristics:

ESP consists of English language teaching which is:

- designed to meet specified needs of the learner;
- related in content (i.e. in its themes and topics) to particular disciplines,
 occupations and activities;
- centered on the language appropriate to those activities in syntax, lexis, discourse, semantics, etc., and analysis of this discourse;
- in contrast with General English.

II. Variable characteristics:

ESP may be, but is not necessarily:

- restricted as to the language skills to be learned (e.g. reading only);
- not taught according to any pre-ordained methodology.

Dudley-Evans and St John (1991) modifies Strevens' original definition of ESP to form their own. The revised definition is as follows:

- I. Absolute Characteristics
- ESP is defined to meet specific needs of the learner;

- ESP makes use of the underlying methodology and activities of the discipline it serves;
- ESP is centered on the language (grammar, lexis, register), skills, discourse and genres appropriate to these activities.

II. Variable Characteristics

- ESP may be related to or designed for specific disciplines;
- ESP may use, in specific teaching situations, a different methodology from that of general English;
- ESP is likely to be designed for adult learners, either at a tertiary level institution or in a professional work situation. It could, however, be for learners at secondary school level;
- ESP is generally designed for intermediate or advanced students;
- Most ESP courses assume some basic knowledge of the language system,
 but it can be used with beginners.

Dudley-Evans and St. John have removed the absolute characteristic that 'ESP is in contrast with General English' and added more variable characteristics. They assert that ESP is not necessarily related to a specific discipline.

Dudley Evans and St. John (1991) identify five key roles for the ESP practitioner:

• teacher

- course designer and materials provider
- collaborator
- researcher
- evaluator.

It seems fairly obvious that if teachers are to be the ones responsible for developing the curriculum, they need the time, the skills and the support to do so. Support may include curriculum models and guidelines and may include support from individuals acting in a curriculum advisory position. The provision of such support cannot be removed and must not be seen in isolation, from the curriculum (Nunan, 1987).

Nunan recognizes that issues of time, skills and support are key for teachers faced with the very real task of developing curricula. In the real world, many ESL instructors/ESP developers are not provided with ample time for needs analysis, materials research and materials development. There are many texts which claim to meet the needs of ESP courses. Johns (1990) comments that none ESP text can live up to its name. He suggests that the only real solution is that a resource bank of pooled materials be made available to all ESP instructors (Johns, 1990).

6. Error Analysis

Error analysis is an activity to reveal errors found in writing and speaking. Richards (1985:96) states that error analysis is the study of

errors made by the second and foreign language learners. Error analysis may be carried out in order to (a) find out how well someone knows a language, (b) find out how a person learns a language, and (c) obtain information on common difficulties in language learning, as an aid in teaching or in the preparation of teaching materials. This definition stresses the functions of error analysis.

Error analysis, offered as an alternative to Contrastive Analysis, has its value in the classroom research, whereas contrastive analysis, which may be least predictive at the syntactic level and at early stages of language learning (Brown 1994: 214), allows for prediction of the difficulties involved in acquiring a second language (Richards 1974: 172); error analysis emphasizing "the significance of errors in learners' interlanguage system" (Brown 1994: 204) may be carried out directly for pedagogic purposes (Ellis 1995: 51; and Richards et al. 1993: 127). The term interlanguage, introduced by Selinker in Brown (1994) is conceptualized as "a system that has a structurally intermediate status between the native and target languages."

Brown (1994: 207-211) and Ellis (1995: 51-52) give a detailed account of and exemplify a model for error analysis offered by Corder (1974). Ellis (1997-b: 15-20) and Hubbard et al. (1996: 135-141) on the other hand, give practical advice and provide clear examples of how to identify and analyze learners' errors. The initial step requires the selection of a corpus of language followed by the identification of errors by making

a distinction between a mistake (i.e. caused by lack of attention, carelessness or some aspect of performance) and an error. The errors are, then classified as overt and covert errors (Brown 1994: 208). The next step after giving a grammatical analysis of each error, demands an explanation of different types of errors that correspond to different processes. Selinker (1974: 35) reports five such processes central to second language learning: "language transfer, transfer of training, strategies of second language of language learning, strategies second communication. overgeneralization TL [Target Language] linguistic material ." In the literature, the studies related to the process of language transfer, and overgeneralization have received considerable attention. Work on overgeneralization errors, on the other hand, viewed as an excessive application of the generalization strategies within L2 by a learner in producing his/her language, is reported by Richards (1974), Jain (1974) and Taylor (1975).

Another concept of error analysis is given by Brown (1980:166). He defines error analysis as the process to observe, analyze, and classify the deviations of the rules of the second language and then to reveal the systems operated by learner. It seems that this concept is the same as the one proposed by Crystal (1987:112) who states that error analysis is a technique for identifying, classifying and systematically interpreting the unacceptable forms produced by someone learning a foreign language, using any of the principles and procedures provided by linguistics. The

three definitions above clarify that error analysis is an activity to identify, classify and interpreted or describe the errors made by someone in speaking or in writing and it is carried out to obtain information on common difficulties faced by someone in speaking or in writing English sentences.

7. Errors and Mistakes

Various definitions of error have been presented by experts. The two definitions which are adequate to reveal errors showing up in texts are (1) error is a systematic deviation, when a learner has not learned something and consistently gets it wrong, (Norrish, 1987:7) and (2) errors are systematic deviations from the norms of the language being learned (Cunningworth,1987:87). It seems that the phrase 'systematic deviation' in these definitions is a keyword which can be interpreted as the deviation which happens repeatedly.

A number of different categories for describing errors have been identified. Firstly, Corder (1973) classifies the errors in terms of the difference between the learners' utterance and the reconstructed version. In this way, errors fall into four categories: *omission* of some required element; addition of some unnecessary or incorrect element; selection of an incorrect element; and misordering of the elements. Nevertheless, Corder himself adds that this classification is not enough to describe errors. That is why he includes the linguistics level of the errors under the sub-areas of morphology, syntax, and lexicon (Corder, 1973). Brown

23

states further (1980:166) that on a rather global level, errors can be

described as errors of addition, omission, substitution, and ordering,

following standard mathematical categories. Within each category, levels

of language can be considered: phonology or orthography, lexicon,

grammar, and discourse.

Ellis (1997) maintains that "classifying errors in these ways can

help us to diagnose learners' learning problems at any stage of their

development and to plot how changes in error patterns occur over time."

This categorization can be exemplified as follows:

Omission:

Morphological omission *A strange thing happen to me yesterday.

Syntactical omission * Must say also the names?

Addition:

In morphology * The books is here.

In syntax * The London

In lexicon * I stayed there during five years ago.

Selection:

In morphology * My friend is oldest than me.

In syntax * I want that he comes here.

Ordering:

In pronunciation * fignisicant for 'significant'; *prulal for 'plural'

In morphology * get upping for 'getting up'

In syntax * He is a dear to me friend.

In lexicon * key car for 'car key'

An error may vary in magnitude. It can include a phoneme, a morpheme, a word, a sentence or even a paragraph. Due to this fact, errors may also be viewed as being either global or local (cited in Brown, 2000). Global errors hinder communication. They prevent the message from being comprehended as in the example below:

* I like bus but my mother said so not that we must be late for school.

On the other hand, local errors do not prevent the message from being understood because there is usually a minor violation of one segment of a sentence that allows the hearer to guess the intended meaning as follows:

* If I hear from her, I would let you know.

The final group is the two related dimensions of error, *domain* and *extent*. Domain is the rank of linguistic unit from phoneme to discourse that must be taken as context in order for the error to be understood, and extent is the rank of linguistic unit that would have to be deleted, replaced, supplied or reordered in order to repair the sentence. This suggestion by Lennon (cited in Brown, 2000) is parallel with Corder's other categorization of *overtly* and *covertly* (1973). Overt errors are unquestionably ungrammatical at the sentence level and covert errors are

grammatically well- formed at the sentence level but are not interpretable within the context of communication. For example, "I'm fine, thanks." Is a correct sentence but if it is given as an answer to the question of "How old are you?" it is covertly error.

Brown (1980:173-181) classifies sources of error into, 1) interlingual transfer, that is the negative influence of the mother tongue of learner, 2) intralingual transfer, that is the negative transfer of items within the target language. In order words, the incorrect generalization of rules within the target language; 3) context of learning, which overlaps both types of transfer, for example, the classroom with its teacher and its materials in the case of school learning or the social situation in the case of untutored second language learning. In a classroom context, the teacher or the textbook can lead the learner to make wrong generalization about the language; 4) communication strategies. It is obvious that communication strategy is the conscious employment of verbal mechanisms for communicating an idea when linguistic forms are not available to the learner for some reasons. There are five main communication strategies, namely:

1) Avoidance

Avoidance can be broken down into several subcategories, and thus distinguished from other types of strategies. The most common type

of avoidance strategy is 'syntactic or lexical avoidance' within a semantic category. When a learner, for example, cannot say "I lost my way" he might avoid the use of way' and says "I lost my road" instead. "Phonological avoidance' is also common, as in the case of a learner of English who finds initial /I/ difficult to pronounce and wants to say "he is a liar" may choose to say" He does not speak the truth". A more direct type of avoidance is "topic avoidance", in which a whole topic of conversation is entirely avoided. To avoid the topic, a learner may change the subject, pretend not to understand, or simply not respond at all.

2) Prefabricated patterns

Another common communication strategy is to memorize certain stock phrases or sentences without understanding the components of the phrases or sentences. "Tourist survival" language is full of prefabricated patterns, most of which can be found in pocket bilingual "phrase" books which list hundred of stock sentences for various occasions. The examples of these prefabricated patterns are "How much does it cost?", "Where is the toilet?". "I don't speak English" and "I don't understand you".

3) Cognitive and personality style

One's own personality style or style of thinking can be a source of error, highlighting the idiosyncratic nature of many learner errors. A reflective and conservative style might result in very careful but hesitant

production of speech with perhaps fewer errors but errors indicative of the conscious application of rules. Such a person might also commit errors of over formality. A person with high self-esteem may be willing to risk more errors, in the interest of communication, because he does not feel as threatened by committing errors with a person with low self-esteem. In answer to "How did you get here?" a person might be heard to say, "I drove my bicycle" while another might say, "I pedaled my bicycle" in an attempt to be precise. Language errors can thus conceivably be traced to sources in certain personal or cognitive idiosyncrasies.

4) Appeal to authority

Another common strategy of communication is a direct appeal authority. The learner may directly ask a native speaker (the authority) if he gets stuck by saying, for example, "How do you say?" Or he might guess and then ask for verification from the native speaker of the correctness of the attempt. He might also choose to look a word or structure up in a bilingual dictionary.

5) Language Switch

Finally, when all other strategies fail to produce a meaningful utterance, a learner may switch to the so-called language switch. That is, he may simply use his native language whether the hearer knows that native language or not. Usually, just a word or two are slipped in, in the hope that learner will get the gist of what is being communicated.

Norrish (1987:21-26) classifies causes of error into three types that is carelessness, first language interference, and translation. The three types of causes of error will be discussed briefly below.

1) Carelessness

Carelessness is often closely related to lack of motivation. Many teachers will admit that it is not always the student's fault if he loses interest, perhaps the materials and/or style of presentation do not suit him.

2) First language

Norrish states that learning a language (a mother tongue or a foreign language) is a matter of habit formation. When someone tries to learn new habits, the old ones will interfere the new ones. These causes of error are called first language interference".

3) Translation

Translation is one of the causes of error. This happens because a student translates his first language sentence or idiomatic expression in to the target language word by word. This is probably the most common cause of error.

Another expert who discusses the sources of error is Richards. In an article in Schummann and Stenson (1978:32), he classifies sources of errors into (1) interference, that is an error resulting from the transfer of grammatical and/or stylistic elements from the source language to the target language; (2) overgeneralization, that is an error caused by extension of target language rules to areas where they do not apply; (3) performance error, that is unsystematic error that occurs as the result of such thing as memory lapses, fatigue, confusion, or strong emotion; (4) markers of transitional competence, that is an error that results from a natural and perhaps inevitable development sequence in the second language learning process (by analogy with first language acquisition); (5) strategy of communication and assimilation that is an error resulting from the attempt to communicate in the target language without having completely acquired the grammatical form necessary to do so; and (6) teacher-induced error, that is an error resulting from pedagogical procedures contained in the text or employed by the teacher.

In another article, Richards (1971:19-22) classifies causes of error into 1) overgeneralization, 2) incomplete application of rules, 3) false concepts hypothesized, and 4) ignorance of rule restriction. To make it clear, the four classifications above are explained briefly below.

1) Overgeneralization

Overgeneralization generally involves the creation of one deviant structure in place of two regular structures, for examples, "He can sings", "We are hope", "it is occurs".

2) Incomplete Application of Rules

An example of incomplete application of rules can be seen in the question forms. Very often they are used, not to find out something, as they should, but as a means of eliciting questions through a transform exercise.

The use of question may also be unrelated to the skills it is meant to establish.

Teacher's questions	Student's responses
Ask her how long it takes	How long it takes?
How much does it cost?	It cost five dollar
What does he have to do?	He have to do write the address

3) False Concepts Hypothesized

False concepts hypothesized are something due to poor gradation of teaching items. The form 'was' for example, may be interpreted as the marker of the past tense, as in: "one day it was happened".

4) Ignorance of Rule Restriction

Closely related to the generalization of deviant structures is failure to observe the restriction of existing structures, that is, the application of rules to context where they do not apply. They man who I saw him violates the limitation on subjects in structure with who. This is again a type of generalization of transfer, since the learners is making use of previously acquired rule in a new situation.

Further, it is necessary to differentiate between error and mistake. A mistake is also a deviation of the norms of the language but is not systematic. It means that the use of the norms of the language in sentences is sometimes true and sometimes wrong. Norrish (1983:8) says that a mistake is an inconsistent deviation that is sometimes the learner 'gets it right' but sometimes wrong. Richards (1985:95) states that mistake is made by a learner when writing or speaking which is caused of lack of attention, fatigue, carelessness, or other aspects of performance. From these two definitions, it can be concluded that a mistake is made by a learner because he does not apply the rule(s) that he actually knows, in other words, a mistake is a non systematic deviation from the norms of the language.

Richards (1992) stated that a learner makes a mistake when writing or speaking because of lack of attention, fatigue, carelessness, or some other aspects of performance. Mistakes can be self-corrected when attention is called, whereas an error is the use of linguistic item in a way that a fluent or native speaker of the language regards it as showing faulty or incomplete learning. In other words, it occurs because the learner does not know what is correct, and thus it cannot be self-corrected. To distinguish between an error and mistake, Ellis (1997) suggests two ways. The first one is to check the consistency of learner's performance. If he sometimes uses the correct form and sometimes the wrong one, it is a

mistake. However, if he always uses it incorrectly, it is then an error. The second way is to ask learner to try to correct his own deviant utterance. Where he is unable to, the deviations are errors; where he is successful, they are mistakes.

8. Teaching Materials

Materials could obviosly be cassettes, videos, CD-Roms, dictionaries, grammar book, readers, workbooks, or photocopied exercises. They could also be newspapers, food packages, photographs, live talks by invited natives speakers, instructions given by a teacher, tasks written on cards, or discussion between learners. In other words, they can be anything which is deliberately used to increase the learner's knowedge and/or experience of the language (Tomlinson, 1998). Later, Tomlinson mentions that materials should have some characteristics in order to be a good material.

Here are some characteristics of the materials that he mentioned:

- Materials should achieve impact,
- Materials should help learners to feel at ease,
- Materials should help learner to develop confidence,
- Materials should require and facilitate learner selfinvestment,
- Materials should expose the learners to language in authentic use,

- Materials should provide the learners with opportunities to use the target language to achieve communicative purposes,
- Materials should take into account that the positive effects of instructions are usually delayed,
- Materials should take into accounts that learners differ in learning styles,
- Materials should take into accounts that learners differ in affective attitudes,
- Materials should permit a silent period at the beginning of instruction,
- Materials should maximise learning potential by encouraging intellectual, aesthetic and emotional involvement which stimulates both right and left brain activities,
- Materials should not rely too much on controlled practice, and
- Materials should provide opportunities for outcome feedback.

9. About Mathematics Bilingual Media for Grade Eight Developed by the Directorate of Development of Junior High School, Directorate General of Management of Basic and Junior Education, Ministry of National Education

The material developed by Directorate General of Management of Basic and Junior Education is a computer-based media. It is in the form of *flash player*. There are seven chapters in the media consist of materials based on national curriculum, which are *Polyanomials*, *Function and Relation, Straight Line Equation, System of Linear Equation with two Variables, Phytagorean Theorem, Circle, and Cube and Cuboids*. Each chapter is presented in two languages which are Bahasa Indonesia and English. The materials are delivered spoken and in written text. Students can easily switch to English and *Bahasa Indonesia* using the menu.

B. Revelant Studies

Many studies have been conducted on error analysis. Mohideen (1991) conducted an error analysis in the written English. He reviewed the current literature on factors that contribute to errors in written English and contributed the subject of error analysis by identifying and discussing additional contributory factors. Error analysis in terms of grammar was conducted by Hashemi (2003) in order to know the distribution of error types in students' writings. In terms of translation, Al-Jarf (2000) described grammaical agreement errors.

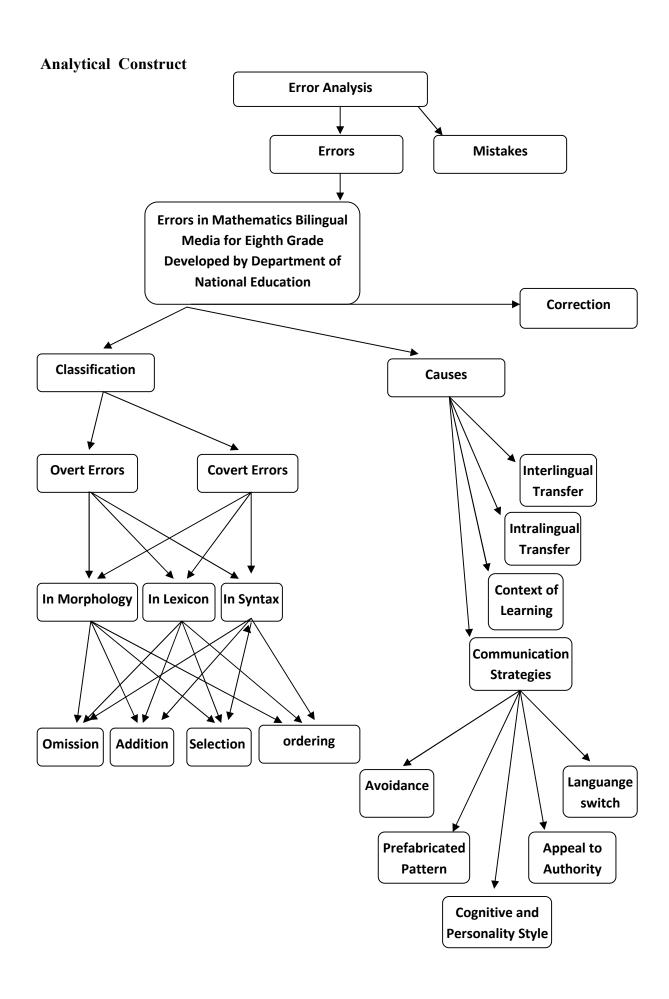
C. Conceptual Framework and Analytical Construct

1. Conceptual Framework

In developing bilingual media for mathematics, the theory of English for Specific Purposes needs to be taken into account. When the developer of the media is someone who knows mathematics and not English, errors related to the language used in the media might occur. Errors occurring in the media can be analyzed using theories of error analysis. The analysis was focused on the grammatical errors since English for Specific Purposes is centered on the language (grammar, lexis, register), besides skills, discourse and genres appropriate.

Following this, the researcher analyzed grammatical errors in the media by classifying errors into overt and covert errors. The errors were listed and classified into four categories: omission of some required elements, addition of some unnecessary element, selection of an incorrect element, and misordering of the elements. Following this theory, linguistic level was included to describe errors and it is stated that error can occur under the sub areas of morphology, syntax, and lexicon. The theory gave more detailed information on what level the errors occurred in the media.

After the errors were identified, the causes of errors were determined by the researcher using theories on the causes of errors.


Hence, the researcher classified causes of errors into interlingual transfer, intralingual transfer, context of learning, and communication strategies. Communication strategies were described into avoidance, prefabricated pattern, appeal to authority, cognitive and personality style, and language switch. This theory is applicable in the written texts and therefore best described the causes of errors in the media.

It was difficult to differentiate between errors and mistakes in the media since the researcher could not ask to do self-correction to the media. The standard of 'sometimes right and sometimes wrong' could not be defined into exact number or precentage. Therefore, both errors and mistakes in the media were termed *errors*.

2. Analytical Construct

The aims of this research were to classify the errors found and to find the causes of the errors found. Firstly, the researcher wrote the text into data sheets and considered them as a research data. After that, the researcher recorded them in the data analysis. The analysis result were classified into tabes of percentages before they were valued.

Below is the diagram of the analytical construct:

CHAPTER III

RESEARCH METHOD

A. Type of Research

This research was about grammatical errors in Mathematics English terms used in a bilingual Mathematics media. The sentences in the media were transcribed to search for the errors. The errors were overtly and covertly analyzed and classified in order to find the causes. Then, the corrections were provided.

The research applied content analysis method which analyzed the data more deeply, and was combined with the theory to get the best result of the research. According to Krippendorf (1980: 21), content analysis is a research technique for making replicable and valid inferences from data to their content. As a research technique, content analysis involves specialized procedures for processing scientific data. Its purpose is to provide information, new insights, a representation of facts, and a practical guide to action (Krippendorff, 1980: 21).

B. Data Type

Since the unit analysis of this research was in flash player, the data were converted into texts through slides. Each slide contained a text, which was evaluated in terms of its grammatical accuracy. The text contained phrases, clauses, sentences, and or the combination of these three.

C. Data Source

The source of the data was the bilingual mathematics media for Grade Eight Developed by The Directorate of Development of Junior High School, Directorate General of Management of Basic and Junior Education, Ministry of National Education and Culture. The texts were gathered from units 1-7 of mathematics lessons discussed in the media. Those data were taken from converting the media into slides.

D. Data Collection

The texts in the media were read and written in a data sheet. After the data were gained, they were classified and analyzed using both qualitative and quantitave methods. Literature review was employed in analyzing the data in order to get valid and constant data. The errors found were classified and the causes of the errors were identified. Then, the corrections for the errors found were provided.

E. Research Instrument

The key instrument of this research was the researcher himself.. The table sheets and related references as the research instruments were used to classify the data.

F. Trustworthiness

Krippendorf (1980: 129-131) defines reliability as how far the research design and the research data reflect the variation in the real phenomena. He points out that there are three kinds of reliability: *stability, reproducibility,* and *accuracy*.

Further, Krippendorf (1980) states that validity refers to how far the results of the study achieve empirical truth, predictive accuracy, or consistency with established knowledge. He classifies three types of validity: *data related validity, product oriented validity,* and *process oriented validity.* Then, the data related validity is divided again into two kinds: *semantical validity* and *sampling validity.*

This study applied the accuracy to measure the degree of reliability. The data were analyzed repeatedly by the researcher and she stopped analyzing when she was sure that her analysis was accurate. The data were presented as clearly as possible to gain validity. The result of the data analysis was discussed by the researcher with her consultants and her colleagues to fulfill the reliability and validity of the research study.

G. Data Analysis

After the data had been collected by the researcher, the data were classified based on the parameter. The general steps in analysis are:

- 1. rewriting the texts into data sheet,
- 2. analyzing the data in terms of grammatical,
- 3. recapping the data result in the statistic table of the data,
- 4. conducting a literature study upon the data,
- 5. describing the data in the table into words, and
- 6. drawing the conclusion.

CHAPTER IV

FINDINGS AND DISCUSSION

A. Descriptive Findings

Descriptive findings and valuing contain the result of data analysis, which is in the form of numbers and percentages. It covers the recappitulation of types of errors, their causes, and the number of alternative corrections proposed. Here is the detailed explanation.

1. The Description of Errors Occurring in Mathematics Bilingual Media

The errors occurring in the media were classified into two main types which were overt error and covert error. When a sentence was ungrammatical, it was classified into overt error. When a sentence was grammatical but not correct, it was classified into covert error. Below are the numbers of overt and covert errors.

Table 1. Errors Occurring in the Media

Classification	Number	Percentage			
Overt errors	259	69.1%			
Covert errors	116	30.9%			
Total	375	100%			

The table shows that there are 375 cases of errors occurring in the media; consisting of 259 cases of overt errors or 69.1% and 116 cases of covert errors or 30.9%. It means that the media still need some corrections.

a. Overt Errors Occurring in the Media

There were 259 cases of overt errors which consisted of omission, addition, selection, and ordering. Omission is the error occuring when an element is missing in the phrases and or sentences. Addition is the error occuring when unnecessary element is added in the phases and or sentences. Selection is the error occuring when the element selected is not correct. Ordering is the error occuring when the order of an element is not correct. Omission, addition, selection, and ordering errors in the media occured in morphological level, lexical level, and syntactical level.

Table 2. Overt Errors Occurring in the Media

Omission			Addition			Selection			Ordering		
M	L	S	M	L	S	M	L	S	M	L	S
38 (10.1%)	51 (13.6%)	8 (2.1%)	22 (5.9%)	43 (11.6%)	2 (0.6%)	4 (1.0%)	75 (20%)	5 (1.3%)	6 (1.6%)	1 (0.3%)	4 (1.0%)

The table shows the percentage of overt errors occurring in the media. Of all the total numbers of errors, the total number of overt error is 259 or 69.1%. The details are 38 cases of omission in morphology or 10.1%, 51 cases of omission in lexicon or 13.6%, 8 cases of omission in syntax or 2.1%, 22 cases or addition in morphology or 5.9%, 43 cases of addition in lexicon or 11.6%, 2 cases of addition in syntax or 0.6%, 4 cases of selection in morphology or 1%, 67 cases of selection in lexicon or 20%, 5 cases of selection in syntax or 1.3%, 6 cases of ordering in morphology

or 1.6%, 1 cases of ordering in lexicon or 0.3%, and 4 cases of ordering in syntax or 1%

b. Covert Errors Occurring in the Media

The covert errors occurring in the media were similarly classified with overt error's classification. There were 116 cases of covert errors which consisted of omission in morphology, omission in lexicon, addition in morphology, addition in lexicon, addition in syntax, selection in morphology, selection in lexicon, selection in syntax, ordering in morphology, ordering in lexicon, and ordering in syntax. There was no case of omission in syntax and selection in morphology found. The details will be shown in the table.

Table 3. Covert Errors Occurring in the Media

Omission			Addition			Selection			Ordering		
M	L	S	M	L	S	M	L	S	M	L	S
54 (14.2%)	4 (1.0%)	0 (0%)	3 (0.8%)	12 (3.1%)	9 (2.4%)	0 (0%)	17 (4.4%)	8 (2.2%)	6 (1.6%)	2 (0.6%)	2 (0.6%)

The table shows the percentage of covert errors occurring in the media. Over the total numbers of errors, the total number of covert error is 116 or 30.9%. The details are 54 cases of omission in morphology or 14.2%, 4 cases of omission in lexicon or 1%, 0 case of omission in syntax or 0%, 3 cases of addition in morphology or 0.8%, 12 cases of addition in lexicon or 3.2%, 9 cases of addition in syntax or 2.4%, 0 case of selection in morphology or 0%, 17 cases of selection in lexicon or 4.4%, 8 cases of

selection in syntax or 2.2%, 6 cases of ordering in morphology or 1.6%, 2 cases of ordering in lexicon or 0.6%, and 2 cases of selection in syntax or 0.6%.

2. The Description of Causes and Corrections of the Errors

a. Causes of the Errors

There are some factors that can cause one create an error. In this media, the causes of errors were defined in four major types, which were interlanguage, intralanguage, context of learning, and communication strategies. Interlanguage relates to the negative influence of one's mother language. Intralanguage relates to the negative influence of the second language learnt, or overgeneralization of rules by the speaker. Context of learning relates to the way one learns the second language, for example the lack of material or the lack of teacher's attention. Communication strategies are strategies applied in communicating in the second language. The strategies are mainly avoidance, or avoiding using certain elements of the second language, prefabricated pattern or memorizing a stock of phrases or sentences without understanding them, cognitive and personality style which is the way of thinking, appeal to authority or asking native speakers in attempts of correction, and language switch, which is switching into one's mother language, usually a word or phrase.

Here is the detail of the causes and their values in percent.

Table 4. Causes of Errors

Interlingual	Intralingual	Communication Strategies						
Transfer	Transfer	Avoidance	Prefabricated Pattern	Cognitive and Personality Style	Appeal to authority	Language Switch		
48 (12.8%)	275 (73.3%)	0 (0%)	0 (0%)	37 (9.9%)	0 (0%)	15 (4.0%)		

There were 375 causes of errors in total with the details of 48 interlingual causes or 12.8%, 275 intralingual causes or 73.3%, 37 cognitive and personality style causes or 9.9%, and 15 language switch causes or 4.0%.

Avoidance, prefabricated pattern, and appeal to authority causes were not found in the media since these causes will be easier to recognize in real spoken conversation rather than in written expressions.

b. Corrections for the Errors

Corrections for the errors were proposed by the researcher in order to correct the errors found in the media. From the total of 2334 items, there were 375 errors found in the media. Thus, 375 items or 16.1% needed grammatical correction.

B. Explanatory Findings and Discussion

1. Overt Errors Occurring in the Media

The details of overt errors occurring in the media will be discussed below.

a. Omission in Morphology

There were 38 cases of omission overt errors in morphology found in the media or 10.1%. Below are the examples of the errors in the media.

- A Polynomials contain two terms is called a binomial where as a polynomial containing three terms is called a trinomial.
- So, the **factor** of 12 are 1, 2, 4, 6, and 12

In the first sentence, the word *contain* does not agree with the sentence. In order to agree, the word *contain* should be in its – ing form or *containing*. The –ing element is missing in the morpheme *contain*. Other errors found in the sentence are *polynomials*, in which it should be in its singular form; and *where* as, in which it should be re-ordered into *whereas*.

In the second sentence, the morpheme *factor* is not correct because it refers to more than one nouns. Thus, it should be *factors*.

b. Omission in Lexicon

There were 51 cases of omission overt errors in lexicon in the media or 13.6%. Below are the examples of the errors in the media.

- Line EF descends the right.
- Choose two different pairs example points E(3,5) and F(-1,3)

The first sentence is not grammatcally correct because it needs a preposition. The sentence should be: *Line EF descends to the right*.

In the second sentence, the word *example* should be followed by *for*, so that: *Choose two different pairs*, *for example points* E (3, 5) and F (-1, 3).

c. Omission in Syntax

There were 8 cases of omission overt errors in syntax or 2.1%. Below are the examples of the errors.

• Example: straight line k parallel to a straight line l is y = 2x + 3.

The sentence does not make any sense in English grammar. The sentence should be: *The equation of straight line k which is* parallel to a straight line l is y = 2x + 3.

d. Addition in Morphology

There were 22 cases of addition overt errors in morphology or 5.9%. Below are the examples of the errors.

- Do you still remember coefficient, variable, constant, terms, exponent of variable and like terms in Algebraic?
- A line will intersection x- axis if y = 0.

In the first sentence, the word **algebraic** should be **algebra** in order to make the sentence grammatically correct, so that the sentence becomes: *Do you still remember coefficient, variable, constant, terms, exponent of variable and like terms in Algebra?*

The second sentence needs verb after the modal *will* instead of noun. The word **intersection** should be **intersect**, so that: A line will **intersect** x- axis if y = 0.

e. Addition in Lexicon

There were 43 cases of addition overt errors in lexicon in the media or 11.6%. Below are the examples of the errors.

- The region inside a circle which is bounded by two radiuses and an arc of the circle.
- Because of every member of set A is related to the member of set B, and every member of set A has only one partner in set B, so that the relation between set A and set B is called function or mapping.

The first sentence makes no sense because when the word which is added to it, it forms a phrase, not a complete sentence. When the word which is eliminated from the sentence, it forms a grammatically correct sentence: *The region inside a circle is bounded by two radiuses and an arc of the circle*.

The phrase **because of** should be followed by a noun instead of a phrase. In order to be grammatically correct, the word **of** in second sentence should be eliminated, so that: *Because every member of set A is related to the member of set B, and every member of set A has only one partner in set B, so that the relation between set A and set B is called function or mapping.*

f. Addition in Syntax

There were 2 cases of addition overt errors in syntax or 0.6%. Below is one of the examples of the errors.

• On the chords PQRS of the rectangle on the rectangle on the right figure, given P = 83 and Q = 27.

In the sentence, there is a repetition of the phrase **on the rectangle**. In order to form a grammatically correct sentence, the phrase should be eliminated, so that: *On the chords PQRS of the* rectangle on the right figure, P = 83 and Q = 27.

On the other hand, the word **given** should also be eliminated.

g. Selection in Morphology

There were 4 cases of selection overt errors in morphology in the media or 1.0%. Below is one of the examples of the errors.

• **koefficient** a^2 , ab, b^2 is 1, 2, 1.

In the sentence, the word **koefficient**, which is not an English word, is selected instead of **coefficient**. In order to make the sentence grammatically correct, the word should be in English and adjusted in the sentence, so that: *coefficients* of a^2 , ab, b^2 are 1, 2, 1.

h. Selection in Lexicon

There were 75 cases of selection overt error in lexicon in the media or 20.0%. Below is one of the examples of the errors.

• *Type your name, than press the enter button.*

In the sentence, the word **than** is selected. Thus, the sentence makes no sense since it does not show any comparisons. The word **then** should be selected instead, so that: *Type your name, then press the enter button*.

i. Selection in Syntax

There were 5 cases of selection overt errors in syntax in the media or 1.3%. Below is one of the examples of the errors.

• It's perimeter is 240 m.

The phrase **it's** is selected so that the sentence has double verbs. The phrase **it's** should be replaced with **its** so that: *Its* perimeter is 240 m.

j. Ordering in Morphology

There were 6 cases of ordering overt errors in morphology in the media or 1.6%. Below is one of the examples of the errors.

• The area of it's base is $10m^2$ width 2 m and height 3 m.

The word height is missordered. The correct order should be height, so that: The area of its base is $10m^2$ width 2 m and height 3 m.

k. Ordering in Lexicon

There was 1 case of ordering overt errors in lexicon in the media or 0.3%. Below is the example of the error.

• Haris has a car toy.

In the sentence, there is a missordering in the phrase **car toy**.

The correct order should be **toy car**, so that: *Haris has a toy car*.

l. Ordering in Syntax

There were 4 cases of ordering overt errors in syntax found in the media or 1.0%. Below is one of the examples of the errors.

 In the following equations and determine which equations one linear equations with two variables.

The sentence needs to be revised into: in the following equation, determine which ones are linear equations with two variables.

2. Covert Errors Occurring in the Media

The details of covert errors occurring in the media will be discussed below.

a. Omission in Morphology

There were 54 cases of omission covert errors in morphology in the media or 14.2%. Below is one of the examples of the errors.

• Kids **play** drum band.

The sentence is used as the title for a video in the media. In such context, the sentence should be: *Kids playing drum band*.

b. Omission in Lexicon

There were 4 cases of omission covert errors in lexicon in the media or 1.0%. Below are the examples of the errors.

• So, the three points are on the straight line.

The sentence misses the word **same** since the context of the sentence in the media is two show that the two lines are on the same line which is straight. The sentence should be: *So, the three points* are on the **same** straight line.

c. Addition in Morphology

There were 3 cases of addition covert errors in morphology in the media or 0.8%. Below is one of the examples of the errors.

• What is the **relationship** between kid and drum band?

The term in math is **relation**. The sentence should be: *What is* the **relation** between kid and drum band?

d. Addition in Lexicon

There were 12 cases of addition covert errors in lexicon in the media or 3.1%. Below is one of the examples of the errors.

• If R = 10 cm, and OB = 20 cm, then the tangent of AB are...

In *if-clauses* like this sentence, the word **then** is not necessary. In the media, the word **then** is used in almost all similar cases of *if-clauses*. The sentence should be: If R = 10 cm, and OB = 20 cm, the tangent of AB are ...

e. Addition in Syntax

There were 9 cases of addition covert errors in syntax in the media or 2.4%. Below is one of the examples of the errors.

• $P = \{1, 2\}$ and $Q = \{a, b, c\}$ are known.

In the sentence, the addition of phrase **are known** is not necessary. The sentence should be: $P = \{1, 2\}$ and $Q = \{a, b, c\}$.

f. Selection in Lexicon

There were 17 cases of selection covert errors in lexicon in the media or 4.4%. Below are the examples of the errors.

• *How* is the taste of salt?

The word **how** is selected as the question when to ask about the taste of salt instead of the word **what**. The sentence should be: **What** is the taste of salt?

g. Selection in Syntax

There were 8 cases of selection covert errors in syntax in the media or 2.2%. Below is one of the examples of the errors.

• Arel and Hanif played Trio Drum.

The context for the first sentence in the media is the title of a video showing kids playing trio drum. Thus, the tense used in the sentence is not correct. The sentence should be: *Arel and Hanif are playing trio drum*.

h. Ordering in Morphology

There were 6 cases of ordering covert errors in morphology in the media or 1.6%. Below is one of the examples of the errors.

• Nia and her friends have different kinsd of favorite food.

The sentence is grammatically correct. However, the word **kinds** is not correctly ordered. It should be re-ordered into **kinds** so that the sentence becomes:

Nia and her friends have different kinds of favorite food.

i. Ordering in Lexicon

There were 2 cases of ordering covert errors in morphology in the media or 0.6%. Below is one of the examples of the errors

• Airplane and **baloon s** are air transportation and water transportation is such as ship

The sentence is grammatically correct. However, the word **balloon s** is not correctly ordered. It should be re-ordered into **balloons**, so that the sentence becomes:

Airplanes and balloons are air transportation and water transportation is such as ship.

j. Ordering in Syntax

There were 2 cases of ordering covert errors in syntax in the media or 0.6%. Below is one of the examples of the errors.

• Which is the function of range?

There is nothing wrong in the sentence except for that the sentence should ask about the range of the function, not the function of the range. The sentence should be:

Which is the range of the function?

Errors found in the media were classified in omission overt error in morphology, in lexicon, and syntax; addition overt error in morphology, lexicon, and syntax; selection overt error in morphology, lexicon, and syntax; ordering overt error in morphology, lexicon, and syntax; omission covert error in morphology and lexicon; addition covert error in morphology, lexicon and syntax; selection covert error in lexicon and syntax; and ordering covert error in morphology and syntax.

Some of the biggest number of errors found in the media were omission overt error in lexicon, selection overt error in lexicon, and omission covert error in morphology.

3. Errors Not Occurring in the Media

There were two types of errors which were not found in the media. They were omission covert error in syntax and selection covet error in morphology. They were not found because the media consists of explanatory sentences, not conversations. Thus, incorrect replies or speech acts were not found.

4. The Causes of Errors in the Media

There were four main causes of error occurring in the media that were found. The classification of these causes were interlanguage, intralanguage, and communication strategies which were explained as cognitive and personality style, and language switch.

a. Interlanguage

Some examples of errors caused by interlanguage are:

- *How* is the taste of the salt?
- $P = \{1, 2\}$ and $Q = \{a, b, c\}$ are known.
- Lesson in the national test.

The three sentences make natural sentences when they are translated word per word into Bahasa Indonesia. Thus, they receive bad influence from the first language. English speaking peple will say the sentences as:

- What is the taste of the salt?
- $P = \{1, 2\}$ and $Q = \{a, b, c\}$
- Subject in the national examination

b. Intralanguage

Some examples of errors caused by intralanguage are:

- *Type your name, than press the enter button.*
- Fill the blank correctly!
- How many mapping can be made from set P to set Q?
 We can see that the three sentences are not grammatically correct. This errors happen repeatedly,

leading to a conclusion that the writer got bad influence from the target language. Or, in other word, overgeneralize the rule.

c. Communication Strategies

In the media, errors caused by communication strategies were classified into cognitive and personality style; and language switch.

1. Cognitive and Personality Style

Some examples of errors caused by cognitive and personality style are:

- Dtermine the coordinate of the point of intersection on S axis
- Lenght of stairs base (1) lenght of stairs base (2)
- Determining **thr** gradient by counting units.

There are some errors which seem to occur in the three sentences. The errors only happen once and it looks like his/her cognitive and personality style drives the media maker to produce such errors.

2. Language Switch

Some examples of errors caused by language switch are:

- The simplest form of $(x-y)^2$ $(x-y)^2$ adalah...
- Rule of relation: transportasi means
- Line AB parallel with line NO maka

It is obvious that the media maker switches into his/her first language, in this case, Bahasa Indonesia in producing the sentence.

The errors caused by contextual learning and other communication strategies of avoidance, prefabricated pattern and appeal to authority were not found. Errors caused by contextual learning in the media were not found since it was hard to gain information on the context of learning of which the writer of the media had. Errors caused by avoidance, prefabricated pattern and appeal to authority were no found since they are usually found in daily conversation.

5. Correting Errors Found in the Media

There were 375 corrections made by the researcher. In alternative corrections, the errors found were corrected based on the error. The errors were corrected based on the classifications of errors and the causes of errors determined in the analysis. Here are some examples of correct sentences as corrections proposed by the researcher.

a. Correcting Omission Errors

In the occurring omission errors, the sentences were read and the missing elements are identified. The correct mophemes,

lexems, and words and or phrases were added into the sentences. In covert errors, the context are studied before determining whether the sentences are correct or not.

b. Correcting Addition Errors

In the occurring addition errors, the sentences were read and the unnecessary elements were identified. The unnecessary elements were eliminated. The elements could be in the forms of morphemes, lexemes, and or phrases. In covert errors, the context were studied before determining whether the sentences are correct or not.

c. Correcting Selection Errors

In the occurring selection errors, the sentences were read and the selection of morphemes, lexems, and phrases were judged to be proper or not. When there was an unproper choice of morphemes, lexems, and or phrases, the proper ones were selected to replace them. In covert errors, the contexts were studied before determining whether the sentence is correct or not.

d. Correcting Ordering Errors

In the occurring ordering errors, the sentences were read and the ordering of morphemes, lexemes, words and or phrases were judged. The unordered morphemes, lexems, words and or phrases were re-ordered. The contexts were read before determining whether the sentence was correct or not.

Another thing which helped in correcting errors found in the media was the causes of the errors. After the types of errors were identified, the causes of errors were analyzed in order to produce the corrections. The causes of errors in the media were interlanguage transfer, intralanguage transfer, cognitive and personality style, and language switch.

e. Correcting Errors Caused by Interlanguage Transfer

Errors caused by intralanguage transfer found in the media were mostly covert errors. They were sentences which were grammatically correct but were not natural. The bad influence of Bahasa Indonesia showed in terms of the translation so that errors occured. In the occurring errors caused by interlanguage transfer, researcher translated the sentences into Bahasa Indonesia in order to understand what the media's developer attempted to convey, before replacing the improper items and or revising the sentences.

The example of error caused by interlingual transfer is:

• On the chords PQRS of the rectangle on the rectangle on the right figure, given P = 83 and Q = 27.

The correction is:

• On the chords PQRS of the rectangle on the right figure, P = 83 and Q = 27.

f. Correcting Errors Caused by Intralanguage Transfer

Errors caused by intralanguage found in the media occured because of the media's developer over-generalization of English grammar. Thus, the errors were overt errors. They needed the correct rule of English grammar. In the occurring errors caused by intralanguage transfer, the researcher applied the correct English grammar rule for each sentence.

The example of error caused by intralingual transfer is:

 A Polynomials contain two terms is called a binomial whereas a polynomial containing three terms is called a trinomial.

The correction is:

• A Polynomial containing two terms is called a binomial whereas a polynomial containing three terms is called a trinomial.

g. Correcting Errors Caused by Cognitive and Personality Style

Errors caused by cognitive and personality style found in the media occured because the developer of the media was not aware of what he or she wrote. The errors occured in the form of mistypings. In the occurring errors caused by cognitive and personality style, researcher checked the sentences and corrected the mistypings.

The example of error caused by cognitive and personality style is:

 Nia and her friends have different kinsd of favourite food.

The correction is:

 Nia and her friends have different kinds of favourite food.

h. Correcting Errors Caused by Language Switch

Errors caused by language switch were obvious. The media's developer suddenly used Bahasa Indonesia in the sentences. In the media, developer switched to Bahasa Indonesia and used one or two words from Bahasa Indonesia. In the occurring errors caused by language switch, researcher figured out what the media's developer attempted to convey, before translating the words into English.

The example of errors caused by language switch is:

• **koefficient** a^2 , ab, b^2 is 1, 2, 1.

The correction is:

• Coefficients of a², ab, b² are 1, 2, 1.

6. Further Discussion on the Errors Found in the Media

From the total items of 2334, the total number of errors which needs to be corrected is 375 or 16.1%. It indicated that the media has some weaknesses in providing the learners with opportunities to use the target language to achieve communicative purposes.

Materials should achieve impact (Tomlinson, 1998). The use of English for other subjects besides English subject must give impacts into learning English itself. When materials should achieve impacts, the impacts expected must be positive ones. Since some of the errors are essential, such as incorrect or missing *to-be*, incorrect word selections, wrong word orders, sudden switch to Bahasa Indonesia, and so on, the teacher should lead students' understandings so that the errors will not give negative impacts on their behaviours in learning English.

Materials should expose the learners to language in authentic use. Materials should help them to feel at ease (Tomlinson, 1998). The English used in the media has exposed students to use mathematics terms in English. This is something new to the students and the teacher should introduce them to students in such a way so that the students feel at ease. In relation

to errors found in the media, the teacher should make sure that they know what is wrong so that they will not make the same errors.

The errors occurring in the media indicate that the developer should involve a language expert, in this case English language expert, when developing bilingual media. The students of International Standard School will get their examinations in English and they must learn the materials through the content of the media used in teaching-learning process. Therefore, errors in the media should be minimum or there should be no errors at all.

In general the media has maximised learning potential by encouraging intellectual, aesthetic and emotional involvement through the content, illustration, simulation, and interactive tasks and quizes. This is in line with Tomlnson's argument about the characteristics of good media (1998).

Further discussion on the errors occurred in the media can be explained in more details as follows:

a. Omission Overt Errors in the Media

The number of omission overt errors found in the media in total was 25.8% or 97 cases. Omission overt error was the biggest type of errors which was found in the media. Since overt errors mean ungrammatical sentences, it is clear that the media still lacks correct grammatical rules.

The biggest contribution to omission overt errors was of omission overt error in lexicon, with 51 cases found. It shows that some elements need to be added to 51 items in the media in order to make them grammatically correct. As discussed earlier, one of the missing elements was *to-be*. Other missing elements were -s and -es for plural forms, and preposition *of*.

Omission overt errors in morphology also occur in 38 cases. This shows that some words in the media were not spelled correctly. One of the incorrect spellings was *cuboid* for *cuboids*. The developer constantly spelled *cuboid*. Apparently the developer thought that *cuboids* were the plural form of *cuboid* so that he or she always wrote *cuboid* instead of *cuboids*.

The omission overt errors in syntax were only 8 cases.

This shows that there were not many omission overt errors made at sentence level.

b. Addition Overt Errors in the Media

The number of addition overt errors found in the media in total was 18.1% or 67 cases. The biggest error occurring in the media was addition in lexicon, with 43 cases found. There were many unnecessry words added in the sentences in the media. They made the sentences ungrammatical. This

indicated that the developer overgenerated the rules of English grammar.

Addition overt errors in morphology found in the media indicated that the developer of the media still confused the part of speech such as noun, verb, and adjective. In some sentences which needed verbs, the developer added unnecessary suffixes so that they became nouns, and hence, caused errors.

The addition overt error in syntax only happened twice. In both cases, it seemed that the developer was not aware that she or he typed the same phrases twice. However, those mistypings had made the sentences ungrammatical.

c. Selection Overt Errors in the Media

The number of selection overt errors found in the media in total was 22.3% or 84 cases. The biggest selection overt error occurred was in lexicon. This indicated that the developer still confused some words in English, for example the word *then* with *than*. This was the most significant error found in the media and it ocurred in 75 cases. This indicated that the developer did not re-check her or his work, and there were no language experts evaluated the English used in the media.

The selection overt error in the media happened four times. All of the errors was a mistyping. It was clear that the

developer was not aware of the errors. Again, there were no language experts involved in developing the media.

The selection overt errors in syntax were not often found. There were 5 cases of selection overt error. The errors indicated that some rules in English grammar were still overgenerated by the developer, such as *its* and *it's*.

d. Ordering Overt Errors in the Media

The number of ordering overt errors found in the media in total was 2.1% or 11 cases. This media performed relatively small number of ordering overt error. The six cases of ordering overt errors in morphology indicated that those errors were mistypings because in other cases, the developer had mentioned the words correctly.

There were only one case of ordering overt error in lexicon found in the media. The error had to do with the bad influence of Bahasa Indonesia. It was clear that the developer had understood the rule of ordering adjectives and noun into noun phrase. However, when he tried to order a nound and a noun into noun phrase, he seemed to confuse. In the media, he was trying to express *a toy that is in the form of a car (a toy car)*, but he confused it with *a toy for car (a car toy)*. A toy car

and a car toy are different noun phrases which have different meaning.

The four cases of ordering overt errors in syntax found in the media indicated that the developer overgenerated some rules of English grammar.

e. Omission Covert Errors in the Media

The number of omission covert error found in the media in total was 15.2% or 58 cases. The errors consisted of 54 cases of omission covert error in morphology and 4 cases of omission covert error in lexicon

The omission covert error in morphology indicated that the developer had made grammatical sentences. However, the grammar used were not proper. For example, he used past tense to express a sub-title in the menu.

The omission covert errors in exicon in the media were found when the developer failed to express certain meanings because some words were missing. However, even with the missing elements, the sententences were still grammatically correct. The researcher knew that errors courred since the sentences were not given in the correct contexts.

There were no omission covert errors in syntax found in the media. Some sentences in the media did not always have

subject and verb. However, in the given context, the sentences became grammaticaly correct.

f. Addition Covert Errors in the Media

The number of addition overt error found in the media was 6.3% or 24 cases. The addition covert errors occurred in 3 cases. In the media, the developer had added suffixes to some words so that they conveyed different meanings. The suffixes added to the words had made them irrelevant to the context of mathematics terms. However, even with the suffixes added, the sentences were still grammatically correct.

The addition covert errors in lexicon and in syntax happened because of the bad influence of Bahasa Indonesia. Some unnecessary words and phrases were added to some sentences in the media because the additions made good senses in expressions in Bahasa Indonesia. The sentences were grammatically correct. However, this indicated that the media still lacked naturalness.

g. Selection Covert Errors in the Media

The number of selection overt error found in the media is 6.6% or 25 cases. The selection covert errors occurred in lexicon and syntax level. In lexicon level, the developer selected wrong words in some contexts. The most significant wrong selection were in the context of questioning. The

grammar and ordering were correct, but the question words chosen were not. This indicated that the developer lacked knowledge in English. Therefore, the role of a language expert should be taken into account in developing bilingual media.

In syntax level, there were some incorrect tenses which were chosen by the developer for certain contexts. For example, past tense was used for the title of sub menu in the media. This indicated that the developer still confused the use of tenses in English.

h. Ordering Covert Errors in the Media

The number of ordering covert error found in the media is 2.8% or 10 cases. The ordering covert errors in morphology and lexicon occurred from mistypings. The developer was not aware of making the errors. Mistypings in the media were not fatal, but they could be disturbing for the user of the media. In total there were 37 cases of mistypings in morphology, lexicon, and syntax levels. These mistypings also indicated that the developer did not re-check his work or involved a language expert.

The ordering covert error in syntax in the media ocurred in 2 cases. The developer had produced grammatical sentences but they conveyed different meanings with the given contexts. For example, in a context of finding the range of a

function with fiven ranges, the question should be: which is the range of function? Instead of: which is the function of the range? In spoken language, the error might be called slip of the tounge. Again, however, this error might occurred because the developer did not re-check his words and or there were no language experts involved.

CHAPTER V

CONCLUSIONS AND SUGGESTIONS

A. Conclusions

The grammatical errors in mathematics bilingual media for grade eighth developed by the directorate of development of junior high school, directorate general of management of basic and junior education, ministry of national education has been analyzed and the conclusions can be drawn as follows.

1. Errors in the media are classified into omission overt error in morphology (38 cases or 10.1%), omission overt error in lexicon (51 cases or 13.6%), omission overt error in syntax (8 cases or 2.1%), addition overt error in morphology (22 cases or 5.9%), addition overt error in lexicon (43 cases or 11.6%), addition overt error in syntax (2 cases or 0.6%), selection overt error in morphology (4 cases or 1.0%), selection overt error in lexicon (75 cases or 20.0%), selection overt error in syntax (5 cases or 1.3%), ordering overt error in morphology (6 cases or 1.6%), ordering overt error in lexicon (1 cases or 0.3%), ordering overt error in syntax (4 cases or 1.0%), omission covert error in morphology (54 cases or 14.2%), omssion covert error in lexicon (4 cases or 1.0%), addition covert error in morphology (3 cases or 0.8%), addition covert error in lexicon (12 cases or 3.1%), addition covert

error in syntax (9 cases or 2.4%), selection covert error in lexicon (17 cases or 4.4%), selection covert error in syntax (8 cases or 2.2%), ordering covert error in morphology (6 cases or 1.6%), ordering covert error in lexicon (2 cases or 0.6%) and ordering covert error in syntax (2 cases or 0.6%).

- 2. The causes of the errors found in media are interlingual transfer (48 cases or 12.8%), intralingual transfer (275 cases or 73.3%), cognitive and personality style (37 cases or 9.9%), and language switch (15 cases or 4.4%).
- 3. The corrections for the errors are made based on the types of errors and the causes of the errors. Omission errors need addition of missing elements, addition errors need elimination of unnecessary items, selection errors need correct selection of the incorrect elements, and ordering errors need the elements to be re-ordered and or revised. Errors caused by intralingual need to be translated into Bahasa Indonesia before correction, errors caused by interlingual need to be corrected using the correct grammar rule, errors caused by cognitive and personality syle need to be checked, and errors caused by language switch need to be translated into English.

B. Suggestions

Based on the conclusions, some suggestions can be given as follows.

1. For the Media Developer

- a. The errors found in the media should be evaluated. Evaluating the errors occurring in the media would help for the corrections of the media.
- b. The developer should also know the causes of errors so that errors would not be repeated.
- c. The alternative corrections proposed by the researcher could be used as considerations for correction.
- d. Language experts need to be involved in developing bilingual media.

2. For the Teacher

- a. The media is good for teaching. However, the teacher should be aware of errors occurring in the media.
- b. The teacher should also revise whether the English version of the media has used correct terms or not so that it will not confuse or mislead students' understanding on English grammar.

3. For Other Researchers

a. There are a lot of other error analysis methods that can be used in analyzing errors. This research uses only one of them. It is suggested that other researchers conduct similar researchs

- using different and deeper theories of analysis in order to improve the findings of this research.
- b. There are aspects in the media which have not been covered in the focus of this research, such as pronunciation, punctuation, mathematics terms used, etc. It is suggested that other researchers conduct the research on this media with different focuses of research.

BIBLIOGRAPHY

- Al-Jarf, R. 2000. *Grammatical Agreement Errors in L1/L2 Translations*. Retrieved from http: **Error! Hyperlink reference not valid.** on 15th of January, at 8 p.m.
- Baldick, C. 2001. *The Concise Oxford Dictionary of Literary Terms*. Oxford: Oxford University Press.
- Brown, H.D. 1980. *Principles of Language Learning and Teaching*. New Jersey: Prentice-Hall Inc.
- ______. 1994. *Principles of Language Learning and Teaching*. Englewood Cliffs: Prentice Hall Regents.
- _____. 2000. Principles of Language Learning and Teaching. New York: Longman.
- _____. 2001. Teaching by Principles. *An Interactive Approach to Language Pedagogy*. New York: Longman.
- Corder, S.P. 1973. Introducing applied linguistics. Middlesex: Penguin.
- _____. 1974. 'Idiosyncratic Dialects and Error Analysis'. In Richards, J. 1973.

 Error Analysis: Perspectives on Second Language Acquisition. Essex: Longman.
- _____. 1987. Error Analysis and Interlanguage. Oxford: Oxford University Press.
- Crystal, D. 1987. *A Dictionary of Linguistics and Phonetics*. 2nd Edition. New York: Basil Blackwel Inc.
- _____. 1987. *The Cambridge Encyclopedia of Language*. Cambridge: Cambridge University Press.
- _____. 2000. English As A Global Language. Cambridge: Cambridge University Press.
- Cunningsworth, A. 1987. Evaluation and Selecting EFL Teaching Materials. London: Heinemann Education Book.

- Eggins, S. 2004. *An Introduction to Systemic Functional Linguistic, 2nd.* London: Continuum.
- Ellis, R. 1995. *Understanding Second Language Acquisition*. Oxford: Oxford University Press.
- _____. 1997. *SLA Research and Language Teaching*. Oxford: Oxford University Press.
- _____. 1997. Second language acquisition. Oxford: Oxford University Press.
- Finch, Geoffrey. 2000. *Linguistics Terms and Concepts*. London: Macmillan Press, Ltd.
- Fromkin, Victoria, and Robert Rodman. 1983. *An Introduction to Language*. London: Holt-Saunders
- Halliday, M. A. K. 1985. *An Introduction to Functional Grammar*. New Castle: Athenaeum Press, Ltd.
- Hashemi.2003. *Automatic Detection of Grammar Errors in Primary School Children's A Finite Approach* retrieved from http://www.ling.gu.se/ on January 15th, at 8 p.m.
- Hornby, A. S. 1995. Oxford Advanced Learner's Dictionary of Current English. Oxford: Oxford University Press.
- Hubbard, P., Jones, H., Thornton, B. and Wheeler, R. 1996. *A Training Course for TEFL*. Oxford: Oxford University Press.
- Hutchinson, T., & Waters, A. 1987. English for Specific Purposes: A learning-centered approach. Cambridge: Cambridge University Press.
- Jain, M. 1974. Error Analysis: Source, Cause ad Significance. In Richards, J. Error Analysis: Perspectives on Second Language Acquisition. Essex: Longman.
- John, A., & Dudley-Evans, T. 1991. *English for Specific Purposes: International in scope, specific in purpose*. TESOL Quarterly, 25, 297-314.
- Krippendorf, K. 1980. *Content Analysis: An Introduction to Its Methodology*. Beverly Hills: Sage Publication.

- Lightbown, P.M. & Spada, N. 2003. *How Languages Are Learned*. Oxford: Oxford University Press.
- McCarthy, A. C. 2002. An Introduction to English Morphology Words and Their Structure. Edinburgh: Edinburgh University Press.
- Mohideen. 1990. ERROR ANALYSIS-Contributory Factors to Students' Errors, with Special Reference to Errors in Written English. Retrieved from http://www.melta.org.my.hmtl. on January 15the 2001 at 8 p.m.
- Norrish, J. 1987. *Language Learning and Their Errors*. London: Macmillan Publisher Ltd.
- _____.1983. Language Learners and Their Error.s London: Modern English Publication
- Nunan, D. 1987. *Guidelines for the Development of Curriculum Resources*. Adelaide: National Curriculum Resource Centre.
- Purpua, J. E 2004. Assessing Grammar. Cambridge: Cambridge University Press.
- Richards, J.C.1973. Error Analysis. London: Longman.
- _____. 1974. A Non-Contrastive Approach to Error Analysis. Essex: Longman.
- _____. et al. 1992. Dictionary of Language Teaching and Applied Linguistics.

 Essex: Longman
 - _____, J., Platt, J. and Platt, H. 1993. *Dictionary of Language Teaching & Applied Linguistics*. Essex: Longman.
- Segalowitz, N. 2003. *Automaticity* in Lightbown, P.M. & Spada, N. 2003. *How Languages Are Learned*. Oxford: Oxford University Press. 39
- Seidlhofer, B. 2003. *Controversies in Applied Linguistics*. Oxford: Oxford University Press.
- Selinker, L. 1974. *Interlanguage*. In Richards, J. (Ed.). *Error analysis: Perspectives on Second Language Acquisition*. 31-54. Essex: Longman.
- Strevens, P. 1988. *ESP after twenty years: A re-appraisal*. Cambridge: Cambridge University Press.

- Taylor, B. P. (1975). The Use of Overgeneralization and Transfer Learning Strategies by Elementary and Intermediate Students of ESL. Language Learning, 25, pp. 73-107.
- Tomlinson, B. 1998. *Materials Development in Language Teaching*. Cambridge: Cambridge University Press.
- Yule, G. 2004. The Study of Language. Cambridge: Cambridge University Press.

APPENDIX

Table 1. Polynomials

No	Item										Т	ype	S O	f Er	rors	,											C	ause	s o	f Er	rors	S		Alternative Corrections
						O۷	/ert	erro	ors								(Cov	ert	erro	ors					I	I				unic	atio	n	
			nissio			ditio			ectio			derin			nissic		Add			Sele				ering		n	n	0						
		М	L	S	М	L	S	М	L	S	М	L	S	M	L	S	Μ	L	S	М	L	S	M	L	S	t	t	n	Α			Α	L	
																										e	r	t	٧	r	0	р	а	
																										r	а							
1.	Home																																	_
2.	Interactive Multimedia																																	-
	Mathematics for junior high																																	
	school grade 8																																	
3.	Presented by: Directorate of														٧						٧										٧			Presented by: Directorate of
	Development of Junior High																																	Development of Junior High School
	School Directorate General																																	Directorate General of
	of Management of Basic and																																	Management of Basic and Junior
	Junior Education																																	Education Ministry of National
	Department of National																																	Education and Culture
	Education																																	
4.	Intro																																	_
5.	SMP NEGERI SUKA MAJU								٧																								٧	SUKA MAJU JUNIOR HIGH SCHOOL
6.	skip intro																																	-
7.	CHAPTER 1																																	_
8.	Menu:																																	_
9.	Introduction																																	_
10.	Polynomials																																	_
11.	Factorisation of Algebra																				٧										٧			Factorization of Algebra Terms
	Terms																																	
12.	Explanation																																	_
13.	Exercises																																	-
14.	Quiz																																	-
15.	Evaluation																																	-
16.	select menu to learn more																																	-
17.	Polynomials																																	-
18.	Mom asks Andi to buy some																																	-

				-	 1 1			 , ,	 -			-						
	food for them.																	
19.	Dad wants a bag of French																	-
	fries and one burger																	
20.	Ani also wants a bag of																	_
	French fries and a bottle of																	
	coke, whereas Mom wants																	
	one burger																	
21.	One burger costs= 20.000																	-
22.	A bag of French fries costs =																	-
	50.000																	
23.	A bottle of coke costs = 100.																	_
	000																	
24.	How much money should																	_
	Andi pay for all?																	
25.	Identifications of terms in									l								_
	Algebraic																	
26.	Do you still remember		٧											٧				Do you still remember coefficient,
	coefficient, variable,																	variable, constant, terms, exponent
	constant, terms, exponent																	of variable and like terms in
	of variable and like terms in																	algebra?
	Algebraic?																	
27.	Well ,check this out.									l								_
28.	Term: Variable and its																	_
	coefficient or constant																	
29.	Variable: A symbol to																	_
23.	represent numbers																	
30.	Constant: A term in Algebra											+						_
30.	represented in numbers																	
31.	Coefficient: A constant	++	V			-				\vdash	-+			٧				Coefficient: A constant factor of a
J1.	factor of a term in Algebraic		•											١				term in algebra
32.	Exponent of Variable: The	++	V	+	+		+	+	-	\vdash	-	+	+	٧	-	\vdash	+	Exponent of Variable: The
٥٤.	exponent of algebraic		٧											٧				exponent of algebra
33.	Like term: terms having	+		-	+					\vdash	+	+	+		+	\vdash	 +	exponent of algebra
33.	similar variable																	_
2.4		++	.,					+		\vdash	-	+	1 1	-/			-	Identifications of torms in startes
34.	Identifications of terms in		٧											٧				Identifications of terms in algebra

	Algebraic									l		T		
35.	Algebra expression													_
36.	1 term (Monomial)													_
37.	2 terms (Binomial)													_
38.	3 terms (Trinomial)													_
39.	Simplifications of term in Algebraic form (expression)													-
40.	In simplifying Algebraic form 9expression), one must classify the existing terms into like terms.													-
41.	To get a clearer idea, let's check this out.													-
42.	Mrs. Yudi asks her pupil, Retno, to simplify all her classmates' order of food and drinks													-
43.	Algebraic tiles model													_
44.	Mr. Heru asks his pupils to make Algebraic tiles model like this:													-
45.	If x ² and -x ² are combined, they will eliminate one another or equal to zero													-
46.	If x and –x are combined, they will eliminate one another or equal to zero													-
47.	If 1 and -1 are combined, they will eliminate one another or equal to zero													-
48.	Please simplify the expression of 2x-5-3x+1													-
49.	Conclusion of A Polynomials													-
50.	1. A Polynomials is either a monomial or a sum of													_

	T	1 1	 _	1 1	1		-	 	-			 -	1	1		_		
	monomial. A monomial can																	
	be a number, a variable, or																	
	multiplication of a number																	
	and a variable.																	
51.	2. A Polynomials contain	√			٧					٧					٧			A Polynomial containing two terms
	two terms is called a																	is called a binomial, whereas a
	binomial where as a																	polynomial containing three terms
	polynomial containing three																	is called a trinomial.
	terms is called a trinomial.																	
52.	To simplify a polynomial we				٧										٧			To simplify a polynomial we should
	should group like term and																	group like term and then compute
	than compute them.																	them.
53.	Multiplication in algebraic																	_
	form (expression)																	
54.	1. Multiplication of one																	-
	term (monomial) with two																	
	terms (binomial)																	
55.	In order to get more																	_
	understanding in monomial																	
	and binomial multiplication																	
	in Algebraic form																	
	(expression), have a look at																	
	the illustration below.																	
56.	The teacher asks Andi to																	_
	calculate the area of a																	
	rectangle having length 2cm																	
	more than its width.																	
57.	What is the area of the																	_
	square?																	
58.	Width= x																	_
59.	Length= (x+2)																	_
60.	Area= Length x Width																	-
61.	Press simulation button.																	-
62.	Multiplication of two terms																	-
	(binomial) with two terms																	
	(binomial)																	

63.	Area of a rectangle with				1														_
03.	length (a+b) and width (c+d)																		_
	is?																		
64.	Multiplication in Algebraic															-			_
04.	form (expression)																		
65.	3. FOIL Method (First,									٧							٧		FOIL Method (First, Outer, Inner,
05.	Outer, Inner, Laste)									"							١,		Last)
	Outer, miler, Laste)																		Last)
66.	In order to understand the																		_
	multiplication of binomial																		
	with binomial, please have a																		
	look at the illustration																		
	below.																		
67.	The multiplication 0f (x+2)																		_
	with (x+3) is:																		
68.	Exponent in Algebraic form																		-
	(expression)																		
69.	Please remember the																		_
	operation of the exponent																		
	of interger.																		
70.	Exponent operation is																		-
	understood as repeated																		
	multiplication operation																		
	with similar element.																		
71.	repeated n times																		_
72.	Exponent in Algebraic form																		_
	(expression)																		
73.	To give exponent to																		-
	Algebraic form (expression),																		
	please have a look at this																		
	illustration																		
74.	koefficient a ² , ab, b ² is 1, 2,	Ī	٧			٧									٧			٧	Cofficients of a ² , ab, b ² are 1, 2, 1
	1																		
75.	koefficient a ³ , a ² b, ab ² , b ³ , is	Ī	٧			٧									٧			٧	Cofficients of a ³ , a ² b, ab ² , b ³ , are 1,
	1, 3, 3, 1																		3, 3, 1
76.	Exponent in Algebraic form																		_

	(expression)		1 1			 1							1		- 1			1				1
77			1	+ +																		+
77.	To make it easy in giving																					_
	exponent to Algebraic form																					
	(expression) (a+b) ⁿ , you can																					
	use Pascal triangle patterns		1	+ +													_					
78.	check this out					-			-												_	_
79.	coefficient (a+b) ⁰																					-
80.	coefficient (a+b) ¹																					-
81.	coefficient (a+b) ²																					-
82.	coefficient (a+b) ³																					-
83.	coefficient (a+b) ⁴																					_
84.	Exercises																					-
85.	1. Please identify, how many																					-
	terms in each algebraic																					
	expression as follows																					
86.	check your answer by																					_
	clicking the button																					
87.	2. Please simplify the																					_
	algebraic expression below:																					
88.	check your answer by																					_
	clicking the button																					
89.	3. What is the result of																					-
	multiplication of this																					
	algebraic expression?																					
90.	check your answer by																					_
	clicking the button.																					
91.	Are you ready for taking																					_
	Quiz?																					
92.	Type your name than press		1 1	1 1	٧		1 1						+				V			1		Type your name then press enter
	enter button																					button.
93.	Which is the simplest		† †	† †	1		1 1				\dashv									\dashv		_
	form of 2x-5-3x+1																					
94.	2. Which is the simplest		\dagger	1 1																1		_
	form of 5k+4j-2h-8k-6-7h ?																					
95.	3. What kind of polynomial		+	\dagger	+		\dagger	-	+	\dagger	\dashv	-	+	\dagger		\dashv		1	\vdash	 \dashv	-	_
	3. Triat kind of polynomial																					

	I		 -	1 1	1 1	- 1	- 1	1	1 1		 1 1		 	 		-		
	term is the expression of																	
	3c2+3f+3h=2m+2x-5,																	
	included in?						_											
96.	4. What is the result of																	-
	multiplication of Algebraic																	
	expression of $(2x+3)(3x+5)$?															_		
97.	5. Simplify the Algebraic																	-
	expression of 3(x+y) +																	
	4(2x+3y)																	
98.	Result																	-
99.	Total Question = 5																	-
100.	Right Answer = 5																	-
101.	Your score is 100																	_
102.	Factoring Algebraic terms																	-
103.	Factoring a number means																	-
	stating it as multiplication of																	
	several numbers																	
104.	Factors of 12																	-
105.	So, the factor of 12 are 1, 2,	٧												٧				So, the factors of 12 are 1, 2, 4, 6,
	4, 6, and 12																	and 12.
106.	Factoring Algebraic terms																	_
107.	1. Factoring using Algebra																	-
	tiles																	
108.	Udin tries to do factoring																	-
	form algebraic equation of																	
	$X^2 + 3X + 2$; using algebraic																	
	tiles method.																	
109.	Factoring Algebraic terms																	-
110.	2. Factoring out by																	-
	separating the GCF																	
	(Greatest Common Factor).							L										
111.	Below is to determine the																	-
	factoring of 2X ² -10X																	
112.	The CGF 2x ² -10x is:																	
113.	Faktor $2x^2 - 10x = 2x (x-5)$				٧									٧			٧	The factor of $2x^2$ - $10x = 2x (x-5)$.

	T	1 1		 1	-	-	 _	1	 -	-	 1	1	 	-	 	1	1 1	 	-			
114.	Factoring Algebraic terms																					-
115.	Factoring can also be done																					-
	by separating the GCF first.																					
116.	The Factor 3x3-9x2+15x is		٧														٧					The Factor of $3x^3-9x^2+15x$ is
117.	The factor $3x^3-9x^2+15x =$		٧														٧					The factor of $3x^3 - 9x^2 + 15x = 3x(x^2 -$
	$3x(x^2-3x+5)$																					3x+5).
118.	Factoring Algebraic terms																					-
119.	3. Factoring out by guessing																					_
	possible factors																					
120.	Have a look at this																					_
	illustration:																					
121.	Rahmah is doing the																					_
	factoring x ² +7x+12 by																					
	guessing and trying the																					
	possible factors with the																					
	help of Algebra tiles																					
122.	Method 1																					_
123.	Method 2																					_
124.	Method 3																					_
125.	simulation																					_
126.	Incorrect																					-
127.	Left= 6																					-
128.	Left= 2																					-
129.	Left= 0																					_
130.	correct																					_
131.	Factoring ax ² +bx+c; with a		٧														٧					Factoring ax ² +bx+c; with a is not 0.
	not 0																					
132.	ax ² +bx+c algebraic form																					_
	(expression) with a is not																					
	equal to 0 and it can be																					
	factored out using																					
	distribution.																					
134.	Pay attention to the rules in																					_
	the illustration below:																					1
135.	Press simulation button																					
		1					 1	1			1		- 1		_		1			L	_ !	_1

136.	Factoring ax ² +bx+c, with a not 0		٧												٧				Factoring ax ² +bx+c; with a is not 0
137.	Please factor out the algebraic form (expression) of $3x^2+14x+15$																		-
138.	Pay attention to these steps																		_
139.	1. Describe a x c to be the multiplication of its factors.																		-
140 .	2. Determine a couple of numbers having sum of b.																		-
141.	so that, $3x^2+14x+15 = 3x^2+5x+9x+15$																		-
142.	Exercises																		-
143.	1. Determine the factors of $x^2+2xy+y^2$																		-
144.	Completion: $x^2+2xy+y^2=$ $x^2+xy+xy+y^2$																		-
145.	Your answer is incorrect!																		-
146.	Your answer is correct!																		-
147.	2. Determine the factors of $2x^2+7x+3$																		-
148.	Completion																		-
149.	Your answer is incorrect!																		-
150.	Your answer is correct!																		-
151.	3. Determine the factors of $8x^2+2x+3$																		-
152.	Completion																		-
153.	Your answer is incorrect!																		-
154.	Your answer is correct!																		-
155.	Are you ready for taking quiz?																		_
156.	Type your name than press enter button.						٧								٧				Type your name then press enter button.
157.	enter																		-
158.	1. Which one of is the	٧		ν	1										٧		٧	'	Which one of these multiplication

	multiplication bellow produced 9x ² -25y ²													below produced 9x ² -25y ² ?
159.	2. Which is the factors of x^2+5x+6				٧						١	/		Which are the factors of x ² +5x+6?
160.	3. Which is the factors of $2x^2+11x+12$				٧						١	/		Which are the factors of $2x^2+11x+12$?
161.	4. Which is factors of $6x^2+19x+15$.				٧						١	/		Which are the factors of $6x^2 + 19x + 15$?
162.	5. Determine the factors of $3x^2+14x+15$.													-
163.	The Result													-
164.	Total Question= 5													-
165.	Right Answer= 4													-
166.	Your score is 80													-
167.	Are you ready for Evaluation? Type your name, than press the enter button.			٧							,	I .		Are you ready for Evaluation? Type your name, then press the enter button.
168.	enter													_
169.	1. The simplest form of $5x^2y$ - $3xy^2$ + $6xy^2$ is													-
170.	2. The form of 3a-5b-a-4b can be simplified into													-
171.	3. The result of addition of 4x+5y-8z and x-2y-3z is													-
172.	4. The substraction of $3x^2+4x-2$ by $3x^2-6x+8$ is		٧										٧	The subtraction of $3x^2+4x-2$ by $3x^2-6x+8$ is
173.	52x+3y subtracted from 2x+3y is													-
174.	6. If -5(y-2) is subtracted from 7(y+1), it is													-
175.	7. The expending of -2(-q-r) =													-
176.	8. The result of -3p(-4q+5r) is													-

	T		 	 	 	 , ,	 	_		 	 			 	 		
177.	9. The result of (3x+4) (x-2)																-
	is																
178.	10. The multiplication of																_
	(3x-4y) (4x+3y) is																
179.	11. The factor of x ² +2x-48																_
	is																
180.	12. One of factor of $2x^2$ -5xy-	٧										,	٧				One of factors of 2x ² -5xy-12y ² is
	12y ² is																
181.	13. The factor of $4x^2$ -1 is																-
182.	14. The factor of 9a ² -16b ²																-
	is																
183.	15. The simplest form of 2a-																-
	$\frac{2}{a^2+3a+2}$ is																
184.	16. The simplest form of																-
	$2x^2-3x-9/4x^2-9$ is																
185.	17. The simplest form of																_
	$2x^2-2x-2/6x^2-x-2$ is																
186.	18. The simplest form of p ² -																_
	p-6/ 9-p ² is																
187.	19. The simplest form of (x-					٧										٧	The simplest form of
	y) ² - (x-y) ² adalah																$(x-y)^2 - (x-y)^2$ is
188.	20. The simplest form of		٧									,	٧				The simplest form of
	1/a+b + 1/a-b																1/a+b + 1/a-b is
189.	21. 2/x-1 – 3/x+2 is																-
190.	22. $x-1/x^2-4-1/x-2=$																_
191.	23. The simplest form of x ² -																-
	x-6/ 6x-3 : 2x-6/4x-2 is																
192.	Polynomials Evaluation																-
193.	Evaluation Result																-
194.	Total Question = 23																-
195.	Correct Answer = 1																-
196.	Your score is= 4. 34																-

Table 2. Function and Relation

No	Item									Т	ypes	of	Erro	ors										(Cau	ses	of E	rroi	rs		Alternative Corrections
					(Over	t err	ors								Co	vert	erro	rs				Ι	1	С	Co	omn	nuni	cati	on	
		om	nissic	n	addit			electi			dering			ssion		dditic		Sele			orde	ring	n	n	О	st	rate	gies	;		
		М	L	S	M	LS	Ν	/L	S	M	L S	1 2	ΜI	L S	Ν	1 L	S	M	L :	S	МΙ	L S	t	t	n	Α	Р	С	Α	L	
																							е	r	t	٧	r	0	р	а	
																							r	а							
197.	Interactive Multimedia of																														-
	Mathematics																														
198.	Relation and function																														-
199.	Kids play drum band											١	/											٧							Kids playing drum band
200.	Arel and Hanif played Trio Drum																		,	٧				٧							Arel and Hanif are playing Trio Drum
201.	Syahni played belira																		١,	٧				٧							Syahni is playing belira
202.	Fathan played bass drum																			V				٧							Fathan is playing bass drum
203.	Regita played snare drum																		٠,	٧				٧							Regita is playing snare drum
204.	What can you conclude?																														-
205.	What is the relationship between kid and drum band?														٧									٧							What is the relation between the kids and drum band?
206.	Every member of a family has his/her own favourite fruit																														_
207.	One of them likes banana, another one likes grapes, apple, etc																														-
208.	So, there are connections between the member of the family and their favourite fruits																														_
209.	This is what we call Relation																														-
210.	Favourite Sports																														-
211.	Mr. Budi has 5 children,																														-

	T	-		1 1		1 1	 1 1	 -	 -	1	1 1	 	1 1	 1 1			- 1	
	they are Riska, Dimas,																	
	Candra, Dira, and Reni																	
212.	The children have different																	-
	kind of favourite sports																	
213.	Riska plays badminton and																	-
	likes swimming																	
214.	Dimas likes football																	-
215.	Candra likes football too																	_
216.	Dira and Reni have the																	_
	same favourite sports,																	
	which are basketball and																	
	badminton.																	
217.	The connection between																	_
	the children and the sports																	
	is called Relation																	
218.	Example of Relation																	_
219.	When Mr. Budi's children																	_
	are grouped into set A, the																	
	members of set A are set A																	
	= { Riska, Dimas, Candra,																	
	Dira, Reni }																	
220.	And mr. Budi's favourite																	_
	sports can be grouped into																	
	set B																	
221.	Set B = {Badminton,																	_
	Swimming, Basketball,																	
	Football}																	
222.	Summary																	_
223.	From the explanations, we																	_
	can conclude that																	
224.	The relation between set A			1 1														_
	and set B is the rule that																	
	relates the members of set																	
	A to the members of set B.																	
225.	How to Express Relation				1													_
226.	There are 3 ways to express					1 1				1		\top			1	\neg		_
220.	There are 5 ways to express			<u> </u>					I									

	unlation.					-1	1 1	1		1			1	1 1			1	1		1	1	1
227	relation		_	_	-						_				-		-					
227.	1. With arrow diagram		_		-	_	1		-			_		+	_	_	+-					_
228.	2. With Cartesian Coordinate																					-
229.	3. With ordered pairs																					-
230.	Expressing Relation in Arrow Diagram																					-
231.	Nia is having 15 th birthday	٧														٧						Nia is having her 15 th birthday.
232.	She takes her friends, Asep, Bowo, Cindai, and Dian to the restaurant "nikmat"																					-
233.	The available menu are: Soto, Sop, Rawon, Pecel, and Sate																					-
234.	Nia and her friends have different kinsd of favourite food												٧						٧			Nia and her friends have different kinds of favorite food.
235.	Asep likes "rawon and sop", this time he orders rawon																					-
236.	Bowo orders gulai and pecel, those are his favourite food																					-
237.	Cindai likes sate and she orders that																					-
238.	Dian orders sop, because that is the only food that she likes																					_
239.	"Soto and sop" are Nia's favourite food, but she orders soto only																					-
240.	Restaurant "nikmat" provides: soto, sop, rawon, pecel, gulai, sate.																					_
241.	If the children are group into set A, so the members																					_

	of set A are																									
242.	And the menu in 'nikmat"	\vdash			\vdash	+	-		\dashv			+ +	-	-	-	\vdash	\dashv				++	+	+	\dashv		
242.																										_
	restaurant are grouped into																									
2.40	set B.		_	-								-	_								-	_				
243.	The relation is "one's																									-
	favourite food"																									
244.	Another relation might be																									-
	"one's ordered food"																									
245.	Relation "one's ordered																									-
	food"																									
246.	Expressing Relation in																									-
	Cartesian Coordinate																									
247.	To express relation we can																									-
	also use cartesian																									
	coordinate																									
248.	Cartesius field has																									_
	horizontal line and vertical																									
	line																									
249.	The names of members of																									_
	set A are placed on the																									
	horizontal line and the																									
	names of members of set B																									
	are on vertical line.																									
250.	Every member of set A who																				++					_
250.	has relationship to any																									
	member of set B is																									
	expressed by using a dot.																									
251.	Pets	\vdash			\vdash	-	-	\vdash	\dashv				-		+	\vdash	\dashv	+	+	-	++	+		\dashv	-	
251.	a group of 8 th junior high				\vdash	-	-		\dashv						1		\dashv		+	-	++	-	+			_
252.																										-
	school students are talking																									
2=2	about their own pets			-	\vdash	-			_	_		1	_		-	\vdash	_				\vdash		\perp			
253.	Ajeng raises a dog, Dina																									-
	raises a cat.						-		_		-		_	-	-		_	_	_	_	++	_	+	_		
254.	Novi's pet is the same as																									-

	Dina's, that is a cat														1 1		
255.	And Bagus raises a bird					1 1					-				1		
		-															_
256.	If the junior high school																_
	students are arranged into																
	set A, the members of set A																
	are						_				_			_			
257.	And the pets are arranged																-
	into set B.																
258.	The relation is "one's pet"																-
259.	We need transportation to																-
	go to one place to another																
260.	There are many kinds of																_
	transportation means																
261.	Car, bus, and train are land																-
	transportation																
262.	Airplane and balloon s are									٧	٧	'	٧			٧	Airplanes and balloons are air
	air transportation and water																transportation and water
	transportation is such as																transportation is, for example, ship.
	ship																
263.	If the names of																-
	transportation means are																
	arranged into set A, the																
	members of set a are																
264.	Set A = { Car, Bus, Train,																_
	Plane, Bslloons, Ships }																
265.	And the kinds of																_
	transportation are arranged																
	into set B, set B consists of																
266.	Set B = { Land, Air, Water }																_
267.	The relation of			+				1 1									_
	"transportation means"																
	between set A and set B in																
	ordered pairs is																
268.	Relation = {(Car, Land), (Bus,			+	+			+ +	\dashv							\dashv	_
200.	Land), (Train, Land), (Plane,																
L	Lanuj, (Train, Lanuj, (Plane,																

	Air), (Balloons, Air), (Ship,											
	Water)}											
269.	From the previous section,											-
	we can conclude, that											
270.	Relation between set A and											Relation between set A and set B
	set B can be expressed in a											can be expressed in a set of
	set of ordered pairs (a, b,)											ordered pairs (a, b), whereas a is a
	where as a is member of set											member of set A and b is a
	A and b is member of set B.											member of set B.
271.	From these diagrams, which											-
	one is the relation diagram											
	"factor of" set A = {1, 2, 4}											
	and set B = {2, 3, 4}											
272.	Solution :							\perp				-
273.	Relation "factor of' between											-
	set A and set B is:							\perp				
274.	1 is the factor of 2, 3, and 4.											-
275.	2 is the factor of 2 and 4											-
276.	4 is the factor of 4.											-
277.	The arrow diagram that											-
	describes the relation											
	"factor of" between set A											
	and set B is the diagram b.											
278.	Draw an arrow diagram of											-
	the relation of "three times"											
	between set K = {9, 12, 15,											
	21} and set L = {3, 4, 5, 7}											
279.	Solution: the arrow diagram											-
	of the relation "three times"											
	between set K and set L is											
280.	Exercise											-
281.	Draw a Cartesian diagram											-
	for this arrow diagram											
282.	Express the relation											-
	between these two sets of											
	transportation in a set of											

	ordered pairs.														
283.	A = {becak, car, ship, motorcycle, plane, train, boat}														-
284.	B = {land, water, air}														-
285.	Rule of relation: transportasi means			٧										٧	Rule of relation: transportation means.
286.	Solution: the set of ordered pairs of relation "transportation means" between set A and set B is														
287.	Relation = { (becak, land), (car, land), (motorcycle, land), (train, land), (ship, water), (boat, water), (plane, air) }														-
288.	This set of ordered pairs is the relation between Set A and Set B.														-
289.	Make lists of set a and set B and determine the possible relation!														-
290.	Relation: { (paper, solid), (gasoline, liquid), (oil, liquid), (oksigen, gas), (stone, solid) }														-
291.	Members of set A = { paper, gasoline, oil, oksigen, stone }														-
292.	Members of set B = { solid, liquid, and gas }														-
293.	Rule of relation = kind of material														-
294.	Look at the arrow diagram below!														-
295.	The relation between set a and set B is														-

		1 T	-1	1 1	_	1	1	 -1	1 1		- 1	1	1 T			П		1	1 1	 - 1	1
296.	a. factor of														<u> </u>						-
297.	b. more than																				_
298.	c. less than																				-
299.	d. half of																				-
300.	The answer is right.																				-
301.	Four people like to play different kinds of sport; Rio likes to play basketball and football, Dewi likes to play badminton and chess, Ratih likes to play basketball, and Zaki likes to play basketball and badminton.																				-
302.	According to the previous data, determine the relation																				-
303.	a. likes to learn																				_
304.	b. likes to play																				-
305.	c. likes to eat																				
306.	d. likes to drink																				-
307.	The set A {0, 1, 4, 9, 16} and the set B {0, 1, 2, 3, 4}. The relation between set A and set B is	٧															٧	1			The set A is {0, 1, 4, 9, 16} and the set B is {0, 1, 2, 3, 4}. The relation between set A and set B is
308.	a. less than																				-
309.	b. factor of																				-
310.	c. square of																				-
311.	d. square root of																				-
312.	the answer is wrong																				-
313.	Set A = {0, 1, 2, 3, 4} and set B = {0, 1, 4, 9, 16}																				-
314.	The relation between set A and set B is																				-
315.	a. less than																				-

		 	1 1	-				 1	1 1	_	 		_	- 1	 	
316.	b. factor of															-
317.	c. square of															-
318.	d. square root of															-
319.	Look at this coordinate															-
	diagram below!															
320.	The relation between set A															-
	and set B is															
321.	a. More than															-
322.	b. less than															_
323.	c. opposite of															-
324.	d. factor of															-
325.	Number of questions = 5															_
326.	right answer = 1															_
327.	total score = 20															-
328.	Function expression															-
329.	Have you ever tasted the															-
	flavor of sugar, salt, vinegar,															
	and other kinds of spices?															
330.	Try to taste the sugar															_
331.	It must be sweet.															-
332.	How is the taste of salt?				٧							١	/			What is the taste of salt?
333.	It must be salty, there is no															-
	salt, which is sweet.															
334.	How is the taste of pepper?				٧							١	/			What is the taste of pepper?
335.	Is there any pepper, which is															-
	not hot?															
336.	Is there any vinegar, which															-
	is not sour?						$\perp \perp$									
337.	Introduction to function						$\perp \perp$									-
338.	The spices are arranged into															-
	set A, the members are						$\perp \perp$									
339.	Set A = {sugar, salt, pepper,															-
	vinegar}						$\perp \perp$									
340.	And the taste of the spices															-

					 - 1 1			 -		1	1 1	-		1		T
	are arranged into set B.															
341.	Set B = {sweet, salty, hot, sour}															-
342.	The relation is "tastes of spices"															-
343.	Function notation															-
344.	Relationship between set A and set B is a function (mapping)								٧			٧				Relation between set A and set B is a function (mapping).
345.	In the arrow diagram, members of set A are related to the members of the set B.															-
346.	Drawn by an arrow															-
347.	Summary															-
348.	Because of every member of set A is related to the member of set B, and every member of set A has only one partner in set B, so that the relation between set A and set B is called function or mapping.		V										V			Because every member of set A is related to the members of set B, and every member of set A has only one partner in set B, the relation between set A and set B is called function or mapping.
349.	Function of set A and set B is a relation, which relates each member of set A to exactly one member of set B															-
350.	Domain, co-domain, and Range of function															-
351.	If a function is like this arrow diagram below. So the domain, codomain, and range can be seen from the simulation below.						٧						٧			If a function is like this arrow diagram below, the domain, codomain, and range can be seen from the simulation below.
352.	Summary															
353.	From the previous section															_

	we can define domain, co-																	
	domain, and function range																	
354.	Set A is domain																	-
355.	set B is co-domain																	-
356.	Members of set B which are	٧		٧	'									٧				Members of set B which are
	related to set A is Range																	related to set A are called Range
357.	One on one correspondence																	-
358.	If province capitals in		٧													٧		If province capitals in Kalimantan
	Kalimantan are arranged																	are arranged into set A, the
	into set A, the members of																	members of se t A are
	set set A are																	
359.	Set A = { Banjarmasin,																	-
	Samarinda, Palangkaraya,																	
	Pontianak }					1		<u> </u>				-						
360.	And provinces in Kalimantan							٧						٧				And provinces in Kalimantan are
264	are into set B			-		1	-				-							arranged into set B
361.	Set B { South Kalimantan,																	_
	East Kalimantan, Central																	
	Kalimantan, West Kalimantan }																	
	On the reserve, when the																	
	relation of "the capitals" is																	
	from set A to set B, the																	
	arrow diagram is as below																	
362.	Next we will draw both						+											_
332.	relations in one arrow																	
	diagram																	
363.	Notation for the relation of																	-
	"province capital" is f and																	
	notation for relation of "the																	
	capitals" is g, both diagrams																	
	are shown as the picture																	
	below.																	
364.	Summary																	-
365.	from the example we can																	-
	determine that																	

	·	 1 1			 1	 -	1 1			1			1 1			-	_		1	
366.	Reciprocal relation or																			_
	mapping, for both f and g, is																			
	called one on one																			
	correspondence																			
367.	Counting of function																			_
368.	Calculating the Function																			-
	Value																			
369.	See this arrow diagram																			_
	carefully																			
370.	Minus one is $2 \rightarrow 1$																			_
	read: 2 minus 1 is 1																			
371.	$3 \rightarrow 2$ read: 3 minus 1 is 2																			_
372.	4 → 3 read: 4 minus 1 is 3																			_
373.	5 → 4 read: 5 minus 1 is 4																			_
374.	See this arrow diagram																			_
07.11	carefully																			
375.	If the member of K is x and																			_
3,3.	member of L is (x-1) so the																			
	relation of f is f: $x \rightarrow (x-1)$																			
376.	If the relation is a function,							+												_
370.	then f(x): (x-1) or y = (x-1)																			
377.	Those equations are called	+++		+	-			-		1			+			-		-		
377.	the rule of function, or the																			
	formula of function, or the																			
	equation of function																			
378.	Table of function value									1										_
				-				-		H	-		\vdash			-		-		_
379.	See the function $f(x) = (x-1)$																			-
200	for x = 2, then:							-		1										
380.	The value of f(2) = 1 is called																			_
	the function value for x=2																			
201	T. C .:	 ++	_	-	_			-	_	\vdash		-	+	+		-	-			
381.	The function value of each																			-
	member of set K is arranged																			
	in this function table	+						_		$\sqcup \bot$	_		\sqcup							
382.	Exercises			1																-

			 									_				
383.	Domain of the function in the arrow diagram below is															-
384.	Solution : domain is the origin area of function															-
385.	The domain in the arrow diagram is {1, 2, 4}															-
386.	See the Cartesian coordinate below carefully															-
387.	Which are the members of co-domain															-
388.	check the answer															-
389.	Solution : co-domain is the opposite area from the function															_
390.	co-domain in the Cartesian coordinate above is {1, 2, 3, 4}															_
391.	See this arrow diagram below carefully															-
392.	Which is the function of range?										٧	,			٧	Which is the range of function?
393.	Solution: range is the result area of the function															-
394.	range in the arrow diagram above is {1, 4, 9}															-
395.	See the function table of $f(x)$ = x^2 - x below															-
396.	fill the blank correctly!	٧											٧			Fill in the blank correctly!
397.	And draw Cartesian coordinate															-
398.	Solution: the Cartesian coordinate of the function $f(x) = x^2 - x$ is															-
399.	Quiz															_

400. f(x) = 5 x 2 x the domain is {- 2, 2, 1, 0, 1, 2} the co-domain is {- 2, 2, 1, 0, 1, 2} the co-domain is {- 2, 1, 0, 1, 2} the co-domain is {- 2, 1, 0, 1, 2} the co-domain is {- 2, 2, 1, 0, 1, 2} the co-domain is {- 2, 2, 1, 0, 1, 2} the co-domain is {- 2, 2, 1, 0, 1, 2} the co-domain is {- 2, 2, 1, 0, 1, 2} the co-domain is {- 2, 2, 2, 0, 1, 2} the co-domain is {- 2, 2, 2, 0, 1, 2} the co-domain is {- 2, 2, 2, 0, 1, 2} the co-domain is {- 2, 2, 2, 2} the co-domain is {- 2, 2, 2, 2, 2} the co-domain is {- 2, 2, 2, 2, 2} the co-domain is {- 2, 2, 2, 2, 2} the co-domain is {- 2, 2, 2, 2, 2} the co-domain is {- 2, 2, 2, 2, 2} the co-d			 -		 		 -	 	 		 	 	 	- 1			- 1	
Simple S	400.																	-
401. the answer is wrong																		
402. If f(y) = 3x-2 and f(a) = 7, so the value of a is																		
the value of a is 403. Linear function is defined by f(x) = a X b 404. In the function f(-2) = -8 and f(5) = 13, so the values of a and b are 405. See the graph of function below! 406. based on the graph, the function of f(x) is 407. The answer is right 408. F(x) = x quadrate of 2 409. F(x) = x quadrate of 2 410. Number of questions = 5 411. right answer = 1 412. total score = 20 413. evaluation result 414. Are you ready for evaluation? 415. Type your name, than press the enter button 416. Relation of set A = {2, 3, 5, 6} of to set B = {4, 10, 12, 15} is 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect																		
403. Linear function is defined by f(x) = a X b 404. In the function f(-2) = -8 and f(5) = 13, so the values of a and b are 405. See the graph of function below! 406. based on the graph, the function of f(x) is 407. The answer is right 408. F(x) = x quadrate of 2 409. F(x) = x quadrate of 2 410. Number of questions = 5 411. right answer = 1 412. total score = 20 413. evaluation result 414. Are you ready for evaluation? 415. Type your name, than press the enter button 416. Relation of set A = {2, 3, 5, 6} of to set B = {4, 10, 12, 15} is 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect	402.									٧				٧				
f(x) = a x b																		of a is
404. In the function f(-2) = -8 and f(5) = 13, so the values of a and b are 405. See the graph of function below! 406. based on the graph, the function of f(x) is 407. The answer is right 408. F(x) = x quadrate of 2 409. F(x) = x quadrate of 2 409. F(x) = x quadrate of 2 410. Number of questions = 5 411. right answer = 1 412. total score = 20 413. evaluation result 414. Are you ready for evaluation? 415. Type your name, than press the enter button 416. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect	403.																	-
f(5) = 13, so the values of a and b are																		
Adobe Ado	404.																	-
405. See the graph of function below! 406. based on the graph, the function of f(x) is 407. The answer is right 408. F(x) = x quadrate of 2 409. F(x) = x quadrate root of 2 410. Number of questions = 5 411. right answer = 1 412. total score = 20 413. evaluation result 414. Are you ready for evaluation? 415. Type your name, than press the enter button 416. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect 421. your answer is incorrect 422. d. twice of 421. your answer is incorrect 426. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is 427. d. twice of 428. d. twice of 429. d. twice of 421. your answer is incorrect 420. d. twice of 421. your answer is incorrect 427. d. answer is incorrect 428. d. twice of 429. d. twice of 421. your answer is incorrect 429. d. twice of 420. d. twice of 420. d. twice of																		
below																		
406. based on the graph, the function of f(x) is 407. The answer is right 408. F(x) = x quadrate of 2 409. F(x) = x quadrate root of 2 410. Number of questions = 5 411. right answer = 1 412. total score = 20 413. evaluation result 414. Are you ready for evaluation? 415. Type your name, than press the enter button 416. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect	405.	See the graph of function																-
function of f(x) is 407. The answer is right 408. F(x) = x quadrate of 2 409. F(x) = x quadrate root of 2 410. Number of questions = 5 411. right answer = 1 412. total score = 20 413. evaluation result 414. Are you ready for evaluation? 415. Type your name, than press the enter button 416. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect																		
407. The answer is right ————————————————————————————————————	406.																	-
408. F(x) = x quadrate of 2 409. F(x) = x quadrate root of 2 410. Number of questions = 5 411. right answer = 1 412. total score = 20 413. evaluation result 414. Are you ready for evaluation? 415. Type your name, than press the enter button 416. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect																		
409. F(x) = x quadrate root of 2 410. Number of questions = 5 411. right answer = 1 412. total score = 20 413. evaluation result 414. Are you ready for evaluation? 415. Type your name, than press the enter button 416. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect	407.																	_
410. Number of questions = 5 ————————————————————————————————————	408.	F(x) = x quadrate of 2																_
411. right answer = 1 ————————————————————————————————————	409.	F(x) = x quadrate root of 2																_
412. total score = 20	410.	Number of questions = 5																_
413. evaluation result ————————————————————————————————————	411.	right answer = 1																_
414. Are you ready for evaluation? ————————————————————————————————————	412.	total score = 20																_
evaluation?	413.	evaluation result																-
415. Type your name, than press the enter button V V Type your name, then press the enter button. 416. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is V <td>414.</td> <td>Are you ready for</td> <td></td> <td>-</td>	414.	Are you ready for																-
the enter button enter button. 416. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is - 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect -		evaluation?																
416. Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is ————————————————————————————————————	415.	Type your name, than press				٧									/			Type your name, then press the
6} to set B = {4, 10, 12, 15} is 417. a. Half of 418. b. more than 419. c. factor of 420. d. twice of 421. your answer is incorrect 419. d. twice of 421. set B = {4, 10, 12, 15} is 419. c. factor of 421. set B = {4, 10, 12, 15} is 419. c. factor of 421. set B = {4, 10, 12, 15} is 421. set B = {4, 10, 12, 15} is 422. set B = {4, 10, 12, 15} is 433. set B = {4, 10, 12, 15} is 444. set B = {4, 10, 12, 15} is 445. set B = {4, 10, 12, 15} is 447. set B = {4, 10, 12, 15} is 448. set B = {4, 10, 12, 15} is 449. set B = {4, 10, 12, 15} is 449. set B = {4, 10, 12, 15} is 440. set B = {4, 10, 12, 15} is 441. set B = {4, 10, 12, 15} is 441. set B = {4, 10, 12, 15} is 442. set B = {4, 10, 12, 15} is 443. set B = {4, 10, 12, 15} is 444. set B = {4, 10, 12, 15} is 445. set B = {4, 10, 12, 15} is 446. set B = {4, 10, 12, 15} is 447. set B = {4, 10, 12, 15} is 448. set B = {4, 10, 12, 15} is 448. set B = {4, 10, 12, 15} is 448. set B = {4, 10, 12, 15} is 449. set B = {4, 10, 12, 15} is 449. set B = {4, 10, 12, 15} is 440. set B = {4, 10, 12, 15} is 441. set B = {4, 10, 12, 15} is 441. set B = {4, 10, 12, 15} is 442. set B = {4, 10, 12, 15} is 441. set B = {4, 10, 12, 15} is 442. set B = {4, 10, 12, 15} is 442. set B = {4, 10, 12, 15} is 445. set B = {4, 10, 12, 15} is 447. set B = {4, 10, 12, 15} is 448. set B = {4, 10, 12, 15} is 448. set B = {4, 10, 12, 15} is 449. set B = {4, 10, 12, 15} is 449. set B = {4, 10, 12, 15} is 449. set B = {4, 10, 12, 15} is 449. set B = {4, 10, 12, 15} is 440. set B = {4, 10, 12, 15} is 441. set B = {4, 10, 12, 15} is 441. set B = {4, 10, 12, 15} is 442. set B = {4, 10, 12, 15} is 442. set B = {4, 10, 12, 15} is 445. set B = {4, 10, 12, 15} is 446. set B = {4, 10, 12, 15} is 447. set B = {4, 10, 12, 15} is 448. set B = {4, 10, 12, 15} is 449. set B = {4, 10, 12, 15} is 449. set B = {4, 10,		the enter button																enter button.
Is	416.	Relation of set $A = \{2, 3, 5,$																-
417. a. Half of — 418. b. more than — 419. c. factor of — 420. d. twice of — 421. your answer is incorrect —		6} to set B = {4, 10, 12, 15}																
418. b. more than — 419. c. factor of — 420. d. twice of — 421. your answer is incorrect —		is																
419. c. factor of 420. d. twice of 421. your answer is incorrect	417.	a. Half of																_
420. d. twice of — 421. your answer is incorrect —	418.	b. more than																-
421. your answer is incorrect –	419.			$\coprod I$														_
	420.	d. twice of																-
	421.	your answer is incorrect																-
422. A function with formula f(x)	422.	A function with formula f(x)																-

			 	 _			 	_			 							 1
	$= x^2 - 5x$																	
423.	The right value of function is																	-
424.	your answer is correct																	-
425.	P = {1, 2} and Q = {a, b, c} are known.									٧				٧				P = {1, 2} and Q = {a, b, c}
426.	How many mapping can be made from set P to set Q	٧													٧			How many mappings can be made from set P to set Q?
427.	A function with formula g(x) = ax – 5																	-
428.	The value of function g for x = -1 = 3																	-
429.	the value of a is																	-
430.	A function with formula $f(x)$ = x^2 -1 if the domain of the function is $\{x \mid -2 \le x \le 3, x$ $R\}$ so, the range of f is								٧					٧				A function with formula of $f(x) = x^2$ - 1. If the domain of the function is $\{x \mid -2 \le x \le 3, x \in \mathbb{R}\}$, the range of f is
431.	Domain of relation R : A → B is set																	-
432.	Co-domain of relation R : P → Q is set																	-
433.	The rule of relation in the arrow diagram is																	-
434.	a. More than																	-
435.	b. one more than																	-
436.	c. less than																	-
437.	d. one less than																	-
438.	answer check																	-
439.	Look at the arrow diagram below																	-
440.	which one is a function					1		1				1			1	\neg	t	-
441.	Set A = {2, 3, 4, 5} and set B = {5, 7, 8, 9}																	-
442.	Relation of set A to set B is a function, if the relation is																	-

443.	a. Factor of													_
444.	b. less than													_
445.	c. multiply of													_
446.	d. three less than													_
447.	Total question = 10													-
448.	correct answer = 4													-
449.	your score is = 40													-
450.	evaluation result													-
451.	Click for additional question (essay)													-
452.	Relation of set A = {2, 3, 5, 6} to set B = {4, 10, 12, 15} is													-
453.	a. A half of													-
454.	b. more than													-
455.	c. factor of													-
456.	d. twice of													-
457.	A function with formula $f(x)$ = x^2 -5x the right value of function is													-
458.	P = {1, 2} and Q = {a, b, c} are known.							٧			٧			P = {1, 2} and Q = {a, b, c}
459.	how many mapping can be made from set P to set Q													-
460.	A function with formula g(x) = ax-5													-
461.	the value of function g for x = -1 is 3													-
462.	the value of a is													-
463.	A function with formula $f(x)$ = x^2 -1 if the domain of function f is $\{x \mid -2 \le x \le 3, x$ R $\}$ so the co-domain of f is						٧				٧			A function with formula of $f(x) = x^2$ - 1. If the domain of function f is $\{x \mid -2 \le x \le 3, x \in R\}$, the co-domain of f is

464.	Relation of set A to set B is															-
	expressed in a set of															
	ordered pairs {(-2,4) (-1, -3)															
	(2, 6) (7, 10) (8, 5)}															
465.	write down the set A and															-
	set B															
466.	draw the Cartesian															-
	coordinate of the relation															
467.	is the relation also a															-
	function? Explain!															
468.	A = {a, b, c} B = {-1, 0} are								٧			٧				A = {a, b, c} B = {-1, 0}
	known.															
469.	make all the possible															-
	mapping of set A to set B															
470.	Determine how many	٧										١	/			Determine how many mappings
	mapping can be made															can be made.
471.	A function with formula f(x)															-
	= 2x-5 and the domain M =															
	{-5, -1, 2, 6, 8}															
472.	determine the value of															-
	function f															
473.	draw the graph of function															-
	in Cartesian coordinate															
474.	Express the relation of these															-
	two sets of arrow diagram															
475.	M = {Liputan 6, Seputar															-
	Indonesia, Lintas 5, Good															
	News, Editorial Malam,															
	Fokus, Reportase Sore,															
	Redaksi Sore, Topik Petang,															
	Berita Nasional, Sorot,															
	Brutal}															
476.	P = {RCTI, TPI, Global TV,															-
	SCTV, Indosiar, LaTivi,															
	METRO TV, TRANS, TRANS 7,															
	antv, TVRI}															
	· · · · · · · · · · · · · · · · · · ·	1		 				 		 			_			1

477.	the rule of the relation: news program from															-
478.	E = {x -2 < x < 5, x round number}															$E = \{x \mid -2 < x < 5, x \text{ real number}\}.$
479.	$F = \{ y \mid 0 \le y \le 10, y \}$ round number start from 0															$F = \{ y \mid 0 \le y \le 10, y \text{ real number start from 0} \}.$
480.	The rule of relation : three less than															-
481.	Set T = {0, 4, 8, 12, 16, 20, 24, 28} is known and relation R of set T with the rule of relation "multiplication of"							٧				٧				Set T = {0, 4, 8, 12, 16, 20, 24, 28} and relation R of set T has the rule of relation "multiplication of".
482.	Express the relation R in a set of ordered pairs															-
483.	express the relation R in an arrow diagram															-
484.	Express the relation R in Cartesian coordinate															-
485.	Domain of relation R : A → B is set															-
486.	a. A															-
487.	b. B															_
488.	c. A and B															-
489.	d. part of B															-
490.	Co-domain of relation R : P → Q is set															-
491.	a. P															_
492.	b. Q			11												-
493.	c. P and Q				1 1											-
494.	d. empty															-
495.	The rule of relation in the															-
400	new arrow diagram is			+			+			+						
496.	a. more than		+	++	+	+	+		_	+	 	_	\vdash	\vdash		-
497.	b. less than															_

		 		 -	 								
498.	c. one less than												-
499.	Look at the diagram below												_
500.	which one is a function												-
501.	Set A= {2, 3, 4, 5} and set B =												-
	{5, 7, 8, 9}												
502.	Relation of set A to set B is a												-
	function, if the rule of												
	relation is												
503.	a. Factor of												-
504.	b. less than												_
505.	c. multiply of												_
506.	d. three less than												-
507.	It is known that P = {Malang,												-
	Surabaya, Semarang,												
	Bandung, Jakarta, Denpasar,												
	Sumenep} and Q =												
	{Jatim,Jateng, Jabar, Bali}												
508.	express the relation of R : P												-
	→ Q in a set of ordered												
	pairs in rules of:												
509.	a. capital of												-
510.	b. city in												-
511.	$A = {a, b, c, d, e} $ and $B = {1,}$						٧			٧			$A = \{a, b, c, d, e\}$ and $B = \{1, 2, 3, 4,$
	2, 3, 4, 5, 6} are known												5, 6}.
512.	The relation of A to B is												-
	shown in these sets of												
	ordered pairs.												
513.	Are the sets of ordered pairs												-
	a function ?												
514.	Mention the reason!												-
515.	$V = {a, i, u, e, o} $ and $K = {x,$						٧			٧			$V = \{a, i, u, e, o\} \text{ and } K = \{x, y, z\}.$
	y, z} are known.												
516.	determine how many												-
	possible functions are there												

_		 			 				 							
517.	from set V to set K														_	
518.	from set K to set V														_	
519.	from set V to set V														_	
520.	from set K to set K														-	
521.	The possible mappings of														_	
	set P to set Q are 64.															
522.	How many members does														-	
	the set P have if															
	N(Q) = 8															
523.	how many members does														-	
	the set Q have, if n(P) = 6															
524.	Determine how many		١	/										٧	Determine how many possible	
	possible possible functions														functions of set A to set B, if it is	
	of set A to set B, if known:														known that:	
525.	$A = \{ x x \le 6, y \text{ round } $														-	
	number start from 10}															
526.	and B = $\{-3 < x \le 5, x \text{ round }\}$														-	
	number}															
527.	colours of traffic light} and B														_	
	= {colours of rainbow}															
528.	A= {letters that make the														-	
	word "INDONESIA"} and B =															
	{vocal letters}															
529.	Which one is a one by one														-	
	correspondent among these															
	sets of ordered pairs below?															
530.	Determine a possible set for														-	
	one by one correspondent															
	with the set:															
531.	{primary numbers less than														-	
	11}															
532.	{human's fingers}														_	
533.	{vocal letters]														_	

534.	{lesson in the national test}								٧		١	/			{subjects in the national examination}
535.	{month, which have 31 days}	٧										٧			{months, which have 31 days}
536.	Determine a possible set for one by one correspondent with the set:														-
537.	How many possible one by one correspondent of M to N?														-
538.	draw														-
539.	Determine the value of f(-5) for each function f below:														-
540.	Function f : x → ax + b and a & b real numbers														-
541.	Write the formula of function f and determine the value of f(-25) and f(9)														-
542.	The formula of function g is $g(x) = 3x+a$														-
543.	if the value of g(-1) = 7, determine														-
544.	a. The value of a														-
545.	b. The formula of function g														-
546.	c. the value of g(5) – g(12)														-
547.	Write and complete this table of function $f(x) = x^3 - 2x^2 + 3x - 6$														-
548.	write the set of ordered pairs of function f														-
549.	write the co-domain of function f.														-

										_							1
550.	Domain of function f is {-2, - 1, 1, 0, 1, 2, 3, 4}																-
551.	draw graph of each function below by making the table first!																-
552.	Draw the graph of function $g: x \rightarrow 4(x-3)$ and domain $\{x \mid -1 \le x \le -5, x \text{ round number}\}$																-
553.	$\{x \mid -1 \le x \le -5, x \text{ real number}\}$																-
554.	Are the graph A and B similar?	٧		٧									٧				Are graphs A and B similar?
555.	what is your conclusion of domain in the set of real number and domain in the set of round number?																-
556.	30 function f is defined by $f(x) = 2x-3$ on the domain = { $x \mid -2 \le x \le 4$, $x \mid B$ } and function g is defined by $g(x) = -3x+4$ on the domain = { $x \mid -1 \le x \le -5$, $x \mid B$ }																_
557.	Determine the range of function f and function g																-
558.	Write the set of ordered pairs of function f and function g																-
559.	Raw the function f and function g in a Cartesian diagram				٧										٧	′	Draw the function f and function g in a Cartesian diagram.
560.	Connects the points in the graph of function f and function g, so that it makes two intersecting lines																_
561.	Determine the coordinate of	٧											٧				Determine the coordinate of its

its intercept														interception.

Table 3. Straight Line Equation

No	Item									Ty	ypes	of	Erro	rs											Cau	ses	of E	rroi	rs		Alternative Corrections
					О	vert	erro	ors								Cov	vert	erro	ors				Π	Ι	С		omn			on	
		on	nissi	0	addit	ion	Se	lectio	0	Ord	derin		Omis	sio	Ad	diti	on	Sele	ecti	0	ord	lering					rate	gies			
		n					n			g			n	-				n	-			1	t		n		1	1			
		M	L	S	M L	. S	M	L	S	M	L S	5	M L	S	М	L	S	M	L	S	M	L S	e	r	t	Α					
																							r	а	1	V	r	0	р	ā	
562.	Constant speed of a vehicle																														-
563.	Makes a straight line																		٧					٧	'						Making a straight line equation
	equation																														
564.	An equation of a straight line																														-
565.	Example: an illustration of a sprout's growth																														-
566.	The length of growing time																														-
567.	The height of sprout																														-
568.	An equation of a straight																														-
	line																														
569.	to find the intersection																														-
	point between the line and																														
	axis																														
570.	At $x = 0$, value of function y																														-
	= 1.5x + 0.5 is $y = 0.5$																														
571.	Its intersection (0, 0,5)		٧																					ν	'						Its intersection is (0, 0,5).
572.	At y = 0, value of function y																														-
	= 1,5x + 0,5 is 0 = 1,5 . x +																														
	0,5																														
573.	Its intersection $(-1/3, 0)$				٧		L												_					ν		1	L				Its intersection is $(-1/3, 0)$
574.	A line will intersection x-				٧																			ν	′						
	axis if y = 0																														line will intersect x- axis if $y = 0$.
575.	And a line will intersection y				٧																			ν	'						And a line will intersect y axis if x =
	axis if x = 0																														0.
576.	An Equation of a Straight																														-

	Line																
577.	Conclusion	\vdash			+	-				-		-					_
578.	A curve formed by equation y = ax+b is a straight line.																-
579.	2. The general form of a straight line equation is $y = mx + c$																-
580.	3. A line will intersect x-axis if y = 0																-
581.	4. A line will intersect x-axis if y = 0																-
582.	5. Other equations whose formulas use a principle of a straight line equation are:										٧			٧			Other equations which use a principle of a straight line equation formulas are:
583.	a. An equation of speed																-
584.	b. An equation of voltage																-
585.	C. An equation of mass																-
586.	Exercise																-
587.	1. Haris has a car toy. It can be operated using batteries. Suppose the toy is four cm away from the edge of the room. It is running from the floor with a constant speed of 10 cm per second					`	,						٧				Haris has a toy car. It can be operated using batteries. Suppose the toy is four cm away from the edge of the room. It is running from the floor with a constant speed of 10 cm per second.
588.	a. Formulate the distance of the toy car from the edge of the room after t second if the distance of the toy car from the edge of the room is s.																-

coordinate of the point of intersection on S axis 592. e. How far will the toy car be from the edge after 6 seconds. 593. f. How much time will it take the toy car to reach the distance of 114 cm from the edge of the room. 594. Solution =answer a=		Τ.	1	1							- 1																1
distance (t = 0 to 5 second).	589.																										-
Second S																											
590. C. Draw a graph of the line equation above. 591. d. Dtermine the coordinate of the point of intersection on S axis 592. e. How far will the toy car be from the edge after 6 seconds. 593. f. How much time will it take the toy car to reach the distance of 114 cm from the edge of the room. 594. Solution = answer a=		-																									
equation above. 591. d. Dtermine the coordinate of the point of intersection on S axis 592. e. How far will the toy car be from the edge after 6 seconds. 593. f. How much time will it take the toy car to reach the distance of 114 cm from the edge of the room. 594. Solution =answer a= 595. Given: initial s = 4 cm 596. Constant speed = 10 cm per second 597. Answer: s = 4 + 10 . t 598. =answer e= 599. The distance? 600. Subtitute t = 6 into the eque equation s = 4 + 10 . t 601. We can find s = 64 the distance of from the toy car from the edge of the toy car from the eque equation s = 4 + 10 . t 7		second).																									
Second	590.	c. Draw a graph of the line																									-
Coordinate of the point Coordinate of th		equation above.																									
of intersection on S axis 592. e. How far will the toy car be from the edge after 6 seconds. 593. f. How much time will it take the toy car to reach the distance of 114 cm from the edge of the room. 594. Solution =answer == 595. Given: initial s = 4 cm 596. Constant speed = 10 cm per second 597. Answer: s = 4 + 10 . t 598. =answer e= 599. The distance? 590. Subtitute t = 6 into the eque equation s = 4 + 10 . t 601. We can find s = 64 the distance of the toy car from	591.	d. Dtermine the										٧													٧		Determine the coordinate of the
of intersection on S axis 592. e. How far will the toy car be from the edge after 6 seconds. 593. f. How much time will lit take the toy car to reach the distance of 114 cm from the edge of the room. 594. Solution =answer a=		coordinate of the point																									point of intersection on S axis
592. e. How far will the toy car be from the edge after 6 seconds.																											·
be from the edge after 6 seconds. 593. f. How much time will it take the toy car to reach the distance of 114 cm from the edge of the room. 594. Solution =answer = 595. Given: initial s = 4 cm	592.																										_
6 seconds. 7 7 8 8 8 8 9 9 9 9 9 9																											
593. f. How much time will it take the toy car to reach the distance of 114 cm from the edge of the room? 594. Solution =answer a= 595. Given: initial s = 4 cm V W Substitute t = 6 into the equation s = 4 + 10. t 601. We can find s = 64 the distance of the toy car from the edge of the toy car from the edge of the room? V How long will it take for the to reach the distance of 114 from the edge of the room? V How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the to reach the distance of 114 from the edge of the room? V I How long will it take for the to reach the distance of 114 from the edge of the room? V I How long will take for the to reach the distance of 114 from the edge of the room? V I How long will take for the to reach the distance of 114 from the edge of the room? V I How long will take for the to reach the to reach the distance of 114 from the edge of the room? V I How long will take for the to reach the to reach the distance of 114 from the edge of the room? V I How long will take for the to reach the tor reach the to reach																											
take the toy car to reach the distance of 114 cm from the edge of the room. 594. Solution =answer a=	593			V			-		٧													٧					How long will it take for the toy car
reach the distance of 114 cm from the edge of the room. 594. Solution =answer a= 595. Given : initial s = 4 cm V initial s = 4 cm. Constant speed = 10 cm per second 597. Answer: s = 4 + 10 . t 598. =answer e= 599. The distance? 600. Subtitute t = 6 into the equation s = 4 + 10 . t 601. We can find s = 64 the distance of the toy car from	555.			•					١,													٠					
114 cm from the edge of the room. 594. Solution =answer a= 595. Given : initial s = 4 cm V Initial s = 4 cm. Constant speed = 10 cm per second 597. Answer: s = 4 + 10 . t 598. =answer e= 599. The distance? 600. Subtitute t = 6 into the equation s = 4 + 10 . t 601. We can find s = 64 the distance of the toy car from																											
594. Solution = answer a=																											from the edge of the room:
594. Solution =answer a=																											
595. Given: initial s = 4 cm V initial s = 4 cm. 596. Constant speed = 10 cm per second - 597. Answer: s = 4 + 10. t - 598. =answer e= - 599. The distance? V 600. Subtitute t = 6 into the equation s = 4 + 10. t V 601. We can find s = 64 the distance of the toy car from -	504					_	-																				
596. Constant speed = 10 cm per second - 597. Answer: s = 4 + 10 . t - 598. =answer e= - 599. The distance? V 600. Subtitute t = 6 into the equation s = 4 + 10 . t V 601. We can find s = 64 the distance of the toy car from -							_																				-
second	595.	Given: initial s = 4 cm				۷															٧						initial s = 4 cm.
Second S	596.	Constant speed = 10 cm per																									-
598. =answer e =		· · · · · · · · · · · · · · · · · · ·																									
599. The distance? V What is the distance? 600. Subtitute t = 6 into the equation s = 4 + 10 . t V Substitute t = 6 into the equation the equation s = 4 + 10 . t 601. We can find s = 64 the distance of the toy car from V Substitute t = 6 into the equation the equation s = 64 th	597.	Answer: s = 4 + 10 . t																									-
600. Subtitute t = 6 into the equation s = 4 + 10 . t 601. We can find s = 64 the distance of the toy car from	598.	=answer e=																									-
equation s = 4 + 10 . t	599.	The distance?			٧																		٧				What is the distance?
equation s = 4 + 10 . t	600.	Subtitute t = 6 into the	٧																						٧		Substitute t = 6 into the equation s
601. We can find s = 64 the distance of the toy car from		equation s = 4 + 10 . t																									
distance of the toy car from	601.						1												T							1	-
the edge after 6 second is																											
64 cm.																											
602. =answer f= -	602.																										-
					٧	1		1								1	1	1		1		٧				1	How many seconds needed by the
car to reach the distance?																											
604. time needed by the toy car	604.	time needed by the toy car						1					\dashv	1	1	1	\dashv	\dashv	1	\dashv							-

	T		1 1	1 1	 _	 		 -	1 1		-	 				1	
	to reach the distance of 114																
	cm from the edge of the																
	room																
605.	Substitute s = 114 cm into																-
	the equations																
	s = 4 + 10 . t																
606.	we will find t = 11 seconds																-
607.	1. Equation c = 15 f + 150																-
	shows the relationship																
	between the amount of																
	fat grams, and the																
	number of calories c, in																
	the food.																
608.	a. Determine the																-
	intersection of c-axis																
	and f-axis																
609.	b. Draw the line																-
	equation																
610.	c. A kind of food																-
	contains 20 grams fat.																
	How many calories																
	does the food																
	contain?																
611.	d. If a food contains 750																-
	calories, how much																
	fat does the food																
	contain?																
612.	Solution																-
613.	=answer a=																-
614.	The line will intersect c-axis																-
	if $f = 0$. We will find $c = 150$																
	the																
615.	Coordinate of the point if																-
	intersection on c-axis is (0,																
	150).																
616.	The line will intersect f-axis																-

	1		- 1 1			1 1			1 1				 Г		T
	if $c = 0$. We will find $f = -10$														
617.	The coordinate of the point														-
	of intersection on f-axis is (-														
	10, 0).														
618.	=answer b=														-
619.	Coordinate point (-10, 0)														-
620.	Coordinate point (-10, 0)														-
621.	=answer c=														-
622.	Calory?	٧										٧			What is the number of calories contained in the food?
623.	Subtitute f = 20 into the						٧					٧			Substitute f = 20 into the equation
	equation the number of														the number of calories in the food
	calories in the food is 450.														is 450.
624.	=answer d=														-
625.	Fat?														-
626.	Subtitute f = 20 into the						٧					٧			Substitute f = 20 into the equation
	equation the amount of														the amount of fat in the food is 40
	fatin the food is 40 grams														grams.
627.	1. Determine the x-														-
	intersections and y-														
	intersections of each of														
	the following lines														
628.	a. 8x + 10y = 80														-
	b. $y = 10x + 30$														
629.	Solution														-
630.	=answer a=														-
631.	The line will intersect x-axis														-
	if $y = 0$ we will find: $x = 10$														
632.	The coordinate of the point														-
	of intersection on x-axis is														
	(10, 0)														
633.	The line will intersect y-axis														-
	if $x = 0$ we will find: $y = 8$														
634.	The coordinate of the point]						-
	of intersection on y-axis is														

	(0, 0)	1 1	1 1	- 1	1 1	1 1	- 1	1 1	 1 1		1 1		1 1	1		1 1	-			1
635.	(0, 8) =answer b=							-				_				-				_
	1		++	٠,				+ +	+	-		-				+ ,				
636.	The line will find intersect x-			٧												٧				The line will intersect x-axis if y = 0
	axis if $y = 0$ we will find: $x = -3$																			we will find: $x = -3$.
627			++					+ +	+	-		-				-				
637.	The coordinate of the point																			-
	of intersection on x –axis is																			
620	(-3, 0)							+ +												
638.	The line will intersect y-axis																			-
620	if x = 0		++					+ +	+	-		-				-				
639.	The coordinate of the point																			-
	of intersection on y-axis is																			
640	(0, 30) 1. Draw a line of equation							+ +												
640.	1. Draw a line of equation $2x + 6y = 60$																			-
C 4 1			+			-		+	+		\vdash	_			-	+		-		
641.	=answer=		+													+ +				-
642.	The line will intersect x-axis																			-
643.	if y = 0 then x = 30 The coordinate of		+													+ +				
043.																				-
644.	intersection is (30, 0) The line will intersect y-axis		++					+++			1	_			-	-		-		
644.	if $x = 0$ then $y = 10$																			-
645.	The coordinate of the		++																	
045.	intersection is (0, 10)																			-
646.	Fahrenheit temperature							+ +												
040.	= a (Celsius																			-
	temperature) + b, or F =																			
	a C + b whereas a and b																			
	are Constanta. At 1 atm																			
	pressure, water boiling																			
	point is on 212 or																			
	100 and water																			
	freezing point is on																			
	32 or 0 .																			
647.	Determine the value of a		+					+	+	1	\dagger			\dashv		1 1			-	-
0 17.	and b?																			
										 1										

648.	Solution													_
649.	Subtitute the value (2) to (1) to find the value of a.				١	/					٧			Substitute the value (2) to (1) to find the value of a.
650.	So the value of $a = \frac{9}{5}$ and													So the value of $a = \frac{9}{5}$
651.	Gradient													-
652.	Height													-
653.	height of stairs (1) = height of stairs (2)													-
654.	Lenght of stairs base (1) lenght of stairs base (2)								٧		٧			Length of stairs base (1) length of stairs base (2).
655.	Lenght of base (3) = lenght of base (4)								٧		٧			Length of base (3) = length of base (4)
656.	Lenght of stairs (3) lenght of stairs (4)								٧		٧			Length of stairs (3) lenght of stairs (4).
657.	Conclusion													-
658.	the slope of an object is determined by the difference between the height and the base.													-
659.	The slopes of BC, 6C, and FC are the same													-
660.	$slope = \frac{\text{height difference}}{\text{base difference}}$													-
661.	The term to explain the degree of sleepness or slope in mathematics is gradient							٧					٧	The term to explain the degree of steepness or slope in mathematics is gradient.
662.	component y will be (+) if it ascends/ (-) if it descends													-
663.	component x will be (+) if it moves from the left to the right (-) if it moves from the right to the left													-
664.	Direction of Slope													-
665.	Direction of Gradient													-
666.	Line AB ascends from the													-

	1.6	1 1	-	 1		ı		1						ı				1 1		1		
	left to the right. The																					
	gradient will be positive.	 					-				-							-				
667.	Line CD descends from the																					-
	right to the left. The																					
	gradient will be positive.			-			_															
668.	Line EF descends the right.		٧															٧				Line EF descends to the right. The
	The gradient will be																					gradient will be negative
	negative																					
669.	Line GH ascends to the left.																					-
	The gradient will be																					
	negative.																					
670.	Line IJ = 0																					-
671.	Line KL or has no value Line			٧														٧				Line KL has no value Line KL is
	KL is parallel to y-axis.																					parallel to y-axis.
672.	Look at the two linear																					-
	equation below																					
673.	Find the value of these																					-
	linear equations for the																					
	values x = 0, 1, 2, 3, 4 by																					
	making an arrow diagram																					
	for each linear equation.																					
674.	Conclusion																					-
675.	1. Gradient of the																					-
	line=																					
	the lenght of the component y																					
676	the lenght of the component x			-		-								-								
676.	2. A line with a steepness																					-
	to the right upwards or																					
	to the left downward																					
677	has a positive gradient	\vdash	-	-	\vdash				-	-		-	_	+	\vdash		-	+	+	+		
677.	3. A line with a steepness																					<u>-</u>
	to the left upwards or																					
	to the right downward																					
670	has a negative gradient	\vdash					-		-		$\vdash \vdash$			-				+	\perp	-		
678.	4. The gradient of a line																					-
	that has no steepness is																					

	0 or not defined														
679.	So, the gradient of the lineis the degree of steepness of straight line, and it is commonly represented by m.				٧									٧	So, the gradient of the line is the degree of steepness of straight line, and it is commonly represented by m.
680.	Example =ma= gradient of line a.														-
681.	mb is gradient of line b.														-
682.	line with equation $t = mx + c$ has gradient m./ line with equation $ax + by = c$ has gradient $-a/b$.														-
683.	Gradient → exercise														-
6846 85	1. Determine the gradient of line y = -2x + 2?														-
686.	Solution														-
687.	Line y = -2x + 2 has general equation y = mx + c Y = mx + c has gradient m, so y = -2x + 2 has gradient -2														-
688.	1. Determine the gradient of line $3x - y - 10 = 0$?														-
689.	Solution														-
690.	3x - y = 10 has general equation ax + by = c A line with equation ax + by = c has gradient -a/b so, the gradient is 3														-
691.	1. Determine the gradient of the line passing through points A (3,1) and B (6,2) ?														-
692.	Solution														-
693.	So, the gradient of the line														-

	along point A (3,1) and B (6,2) is 1/3															
693.	1. A student says that gradient of line passing through points (1,7) and (3,9) is $\frac{1-9}{7-3}$															-
694.	is it true or false?															-
695.	Explain															-
696.	Solution															-
697.	the gradient line along two points is															-
698.	so the student's statement is false.															-
699.	Is it true that the following pairs of points are on one line?															-
700.	Explain.															-
701.	Solution															-
702.	to determine whether the three pairs of points are on the same line or not, we use the gradient															-
703.	a. choose two different pairs example points E (3,5) and F (-1, 3)	٧										٧				Choose two different pairs, for example points E (3,5) and F (-1, 3).
704.	gradient EF = gradient FG															
705.	so, the three points are on the straight line						٧							٧		so, the three points are on the same straight line.
706.	b. choose two different pairs example points K (4,1) and M (-1, 5)	٧										٧			(choose two different pairs, for example points K (4,1) and M (-1, 5).
707.	gradient KM ≠ gradient LM															-
708.	so, the three points are on the straight line						٧							٧		so, the three points are in the same straight line.
709.	Determining the gradient															-

				 		 	 		 	 	,			 		
710.	understanding gradient explanation															-
711.	determining thr gradient by counting units.									٧					٧	Determining the gradient by counting units.
712.	another way to determine the gradient of a straight line is by counting units															-
713.	$Gradient = \frac{height \ difference}{base \ difference}$															-
714.	Determining the gradients of two parallel lines															-
715.	Gradient of line L is															-
716.	radient of line K is									٧					٧	Gradient of line K is
717.	So, two lines are parallel if their gradients are the same.															-
718.	If two lines are parallel, then $m_1 = m_2$															-
719.	determining the gradients of two perpendicular lines.															-
720.	Line a is perpendicular gradient is -1	٧											٧			Line a is perpendicular. The gradient is -1.
721.	If two lines are perpendicular, then $m_1 x$ $m_2 + = -1$															-
722.	Exercise															-
723.	Determine the gradient of the following line															-
724.	solution															-
725.	choose two points on the line example point (-2, 0) and (0, -1)		٧									٧				Choose two points on the line, for example point (-2, 0) and (0, -1)
726.	horizontal difference (x) = +2															-
727.	vertical difference (y) = -1															-

	-	 	 	 		 				 		 			
728.	gradient = $-\frac{1}{2}$													-	
729.	2. Determine the													-	
	gradient of the following														
	line														
730.	Solution													-	
731.	A line passing through													-	
	points (0, 0) and B (3, 2)														
	gradient = 2/3														
732.	3. Determine the													-	
	gradient that is parallel to														
	the line $9x - 8y - 4 = 0$														
733.	Solution													-	
734.	if the two lines are parallel,													-	
	then $m_1 = m_2$														
735.	the gradient of the line that													-	
	is parallel to line 9x – 8y – 4														
	= 0 is 9/8														
736.	4. Determine the													-	
	gradient of the line that is														
	perpendicular to line 3y = 7x														
	+ 3														
737.	Solution													-	
738.	$7/3$ is m_1 if the two lines are													-	
	perpendicular then m ₁ x m ₂														
	= -1														
739.	5. Two train toys													-	
	move with equations 2y = 4x														
	-6 and $x + 2y + 4 = 0$														
740.	Do the two train toys move													-	
	on the same railway?														
741.	Solution														
742.	So, the two train toys don't													-	
	move in the same railway														
743.	Quiz													-	
744.	Are you ready for a quiz?													-	

745	T	1 1	1 1	1 1	 	_	1 1	- 1	1	-1	1	 1	-	1	 -	1 1	
745.	type your name then press enter																-
746.	The gradient of the line passing through points (0, 0) and (4, 8) is																-
747.	wrong answer																-
748.	The gradient of the line passing through points F (1, 2) and G (5, 4) is																-
749.	The gradient of the line parallel to line 8x = 2y - 3 is																-
750.	The gradient of the line perpendicular to line 2y – 3x – 2 = 0 is																-
751.	right answer																-
752.	Two lines are perpendicular if																-
753.	The gradient of the following line is																-
754.	Two lines are parallel if																-
755.	The product of the gradients of the two lines is -1																-
756.	the product of the gradients of the two lines is 1																-
757.	the gradient of the two lines are the same																-
758.	the gradients of the two lines are different.																-
759.	The gradient of the following line is																-
760.	The gradient of the line passing through points O (0, 0) and P (3, -6) is																-
761.	The gradient of the line																-

	_		 	 	 		 	 	 	 	_				 	
	passing through points F (1,															
	2) and G (5, 3) is															
762.	Evaluation Result															-
763.	Number of questions = 10															-
64.	right answer = 3															-
765.	Your total point = 30															-
766.	Determining SLE															-
767.	Determining the line															-
	equation if gradient m and															
	point (x_1, y_1) on the line are															
	known.															
768.	Method 1															-
769.	choose any point (x, y)	٧											٧			Choose any points (x, y).
770.	determine the difference of															-
	the ordinate and abscissa of															
	point (x, y) and point (x_1, y_1)															
771.	So, we find : ordinate															-
	difference = $y - y_1$															
772.	abscissa difference : x – x ₁															-
773.	Then, gradient m multiplied	٧											٧			Then, gradient m is multiplied by x
	by $x - x_1$															- x ₁ .
774.	A straight line equation															-
	passing through point (x ₁ ,															
	y ₁) with gradient m can be															
	stated by the formula : y –															
	$y_1 = m (x - x_1)$															
775.	Method 2															-
776.	using y = mx +c determine a															-
	straight line equation															
	passing through B (4, 10)															
	with gradient 2.															
777.	Solution															-
778.	substitute m = 2 and point B															-
	(4, 10) to equation y = mx +															
	c to get the value of c															

779.	substitute value m and c to																				-
	y = m. x + c																				
780.	we find y = 2x + 2																				-
781	Determining an equation of																				-
	a straight line if coordinates																				
	of two points are known																				
782.	Determining a straight line																				-
	equation passing through																				
	point K (x_1, y_1) and L (x_2, y_2)																				
783.	$m KL = \frac{ordinate \ difference}{abscissa \ difference}$																				-
704		1	-	+	-	++				1 1			_		-		-		_		
784.	substitute m KL to m in																				-
785.	equation : A straight line equation	1		+++	-	+				1											
785.	,																				-
	passing through point (x ₁ ,																				
	y_1) and (x_2, y_2) is determined by the formula																				
786.	determining an equation of	1	-	+	-	++				1 1			_		-		-		_		
780.	a straight line I, and passes																				-
	point (x_1, y_1)																				
787.	Example: straight line k		v	,	-	+				+ +						v					Example: the equation of straight
707.	parallel to a straight line I is		١,	'												v					line k which is parallel to a straight
	y = 2x + 3.																				line I is $y = 2x + 3$.
788.	Straight line k passes	1	-		+	++				1 1											inie i is y – 2x + 3.
700.	through B (2, 6)																				-
789.	Determine the equation of			+	-	+	+			1 1										+	
763.	straight line k																				-
790.	Solution					+															
791.	The equation of the straight																				
,,,.	line I y = 2x + 3 I and k are																				
	parallel, so $m_1 = m_2$																				
782.	B (2, 6) and m k =	٧		+		++		-			-				٠,	V	+				B (2, 6) and m k = 2 are substituted
, 02.	2substituted to the equation																				to the equation.
793.	A straight line equation	\Box		+		$\dagger \dagger$															
, , , , , ,	passing through B (2, 6) and																				
	parallel to straight line y =																				
	parametro straight inte y	<u> </u>	I		I					1								<u> </u>	 		

		1	1			1	T		-	1	1 1			-	ı		1		1	1	1			_	-	T
794.	2x + 3 is y = 2x + 2 determining an equation of a straight line which is perpendicular to straight																									-
	line I, and passes trough point (x_1, y_1)																									
795.	Determine an equation of straight line I passing through point A (-5, 2) and perpendicular to straight line I	٧																			٧					Determine an equation of straight line I passing through point A (-5, 2) and is perpendicular to straight line I.
796.	a. Determine an equation of straight line I																									-
797.	b. Straight line I passes through point (3, 0) and (0, -5)																									-
798.	Determine an equation of straight line I based on the result of the equation is step (a)							٧															\			Determine an equation of straight line I based on the result of the equation in step (a).
799.	Determine the gradient which is perpendicular to straight line I																									-
800.	The equation of straight line passing through point A (-5, 2) and perpendicular to straight line I at the figure is $y = -\frac{3}{5}x - 1$		٧																		٧					The equation of straight line passing through point A (-5, 2) and is perpendicular to straight line I at the figure is $y = -\frac{3}{5}x - 1$.
801.	Summary																									-
802.	the steps to determine an equation of straight line which is perpendicular to straight line I, and passes																									-
	through point (x ₁ , y ₁) are:			_	_		-			-		_	_		-					-	<u> </u>					
803.	1. Determine m ₁ of the																									-

	atura i alat liura I						1			1		_	1	1 1		1	I	1	
804.	straight line I 2. Determine m_2 of the straight line which is perpendicular to the straight line I, with $m_1 \times m_2 = -1$ atau $m_2 = -\frac{1}{m_1}$			٧														٧	2. Determine m_2 of the straight line which is perpendicular to the straight line I, with $m_1 \times m_2 = -1$ or $m_2 = -\frac{1}{m_1}$.
805.	3. Substitute m_2 and point (x_1, y_1) to equation $y - y_1 = m(x - x_1)$																		m1
806.	4. Solve the equation																		-
807.	Determining a coordinate of a point of two straight lines																		-
808.	Example: two straight lines I and k with equations $x - y = -3$ and $-x - y = 5$																		-
809.	a. draw two straight lines on the Cartesian coordinates																		-
810.	b. do both straight lines intersect?																		-
811.	from graph (a) determine the coordinate of the intersection																		-
812.	Solution																		-
813.	To determine the point of two straight lines I and k, first draw tables of a pair of the straight line																		-
814.	Drawing a line if a gradient and a point passed through is determined.																		-
815.	Example: draw a straight line passing through a point (2, 4) and its gradient -3/2	٧												٧					Example: draw a straight line passing through a point (2, 4) and its gradient is -3/2.
816.	Step 1																		-
817.	draw a point (2, 4) at																		-

	Cartesian coordinate													
818.	determine the vertical													-
	difference (y) and the													
	horizontal difference (x) of													
	the given gradient													
819.	down = 3 units, to the right													-
	= 2 units													
820.	Find another point of a													-
	point (2, 4) down 3 units													
	then to the right 2 units a													
	point (4,1) is found.													
821.	connect the two points to													-
	make a straight line													
822.	Exercise													-
823.	1. Determine an equation													-
	of a straight line with													
	gradient 3 and													
	intersecting point (2, -6)													
824.	Solution													-
825.	Method 1													-
826.	use the formula $y - y_1 = m$ (x													-
	- X ₁)													
827.	So we will find $y = 3x - 6 - 6$													-
	Y = 3x - 12													
828.	So we will find $y = 3x - 6 - 6$													-
	Y = 3x - 12													
829.	substitute m = 3 and point													-
	(2, -6) to equation y = mx + c													
	to find c													
830.	c = -12 / subtitute c = -12 to													-
	equation y = mx + c, so we													
	will find $y = 3x - 12$.													
831.	So, an equation of a straight													-
	line with gradient 3													
	intersecting point (2, -6) is y													
	= 3x - 12													

022		1		I I	1		1 1	- 1	 1	1 1		1	1		 	1	1	1 1	I		- 1	
832.	So we will find $y = 3x - 6 - 6$ Y = $3x - 12$																					-
833.	Method 2																					-
834.	substitute $m = 3$ and point (2, -6) to equation $y = mx + c$ to find c																					-
835.	c = -12 substitute $c = -12$ to equation $y = mx + c$, so we will find $y = 3x - 12$																					-
836.	so, an equation of a straight line with gradient 3, and intersecting point $(2, -6)$ is y = $3x - 12$																					-
837.	2. Determine an equation of a straight line passing through points B and C as shown in the following figure																					-
838.	Solution																					-
839.	Coordinate point B is (-2, 3)																					-
840.	coordinate point C is (4, -1)																					-
841.	subtitute the values of (x_1, y_1) and (x_2, y_2) into the equation								٧											٧		substitute the values of (x_1, y_1) and (x_2, y_2) into the equation.
842.	so an equation of a straight line passing through points B and C is $y = -\frac{2}{3}x + \frac{5}{3}$																					-
843.	3. Determine an equation of a straight line passing through A (5, 2) and parallel to straight line I		٧			٧										ν	1					Determine the equation of a straight line passing through A (5, 2) and is parallel to straight line I.
844.	solution																					-
845.	$M_1 = \frac{ordinate \ difference}{abscissa \ difference}$																					-
846.	the two lines are parallel then, $m_1 = m_2$																					-

0.47	5	1		1	1 1					1 1		1		1	1 1						
847.	substitute $m_2 = \frac{5}{3}$ and A (5,																				-
	2)into the equation																				
848.	so, an equation of a straight		٧			٧										٧					So, the equation of a straight line
	line passing through A (5, 2)																				passing through A (5, 2) and is
	and parallel to straight line I																				parallel to straight line I is $3y = 5x -$
	is 3y = 5x – 19																				19.
849.	4. Straight line g with																				-
	gradient 2 passes																				
	through point B (2, 13)				-														_		
850.	a. determine the equation																				-
	of the straight line g and the																				
054	equation of straight line h																		_	-	
851.	draw both straight lines on Cartesian coordinate																				-
852.	do the two straight line	V		-	-	+	-	-		-	-					٧	-		+		Do the two straight lines intercest?
852.	intersect?	V														V					Do the two straight lines intersect?
853.	determine the coordinate of																				-
	intersection																				
854.	solution																				-
855.	m = 2 and A (-1, 1) are																				-
	substituted into $y - y_1 = m$ (x																				
	- x ₁)																				
856.	y = 2x + 3																				-
857.	m = 3 and B (2, 13) are																				-
	substituted into $y - y_1 = m$ (x																				
	- x ₁)				-	+++	_	-	_		_						_				
858.	y = 3x + 7									1					-				_		-
859.	To draw the two straight																				-
	lines on the Cartesian																				
	coordinate, first draw a																				
	table of coordinate point																				
960	pairs						-	\vdash		+	+			\vdash			+		_	-	
860.	table of equation $y = 2x + 3$	1	\vdash		+			\vdash		+	+		-		+		+		-	\dashv	-
861.	table of equation y = 3x + 7									+ +									-	-	<u> </u>
862.	yes, both lines intersect									1											-

 863. the coordinate of intersection point of y = 3x + 7 and y = 2x + 3 is (-4, -5) 864. 5. Determine the equation of line k passes through point (6, -3) and is perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and is perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and is perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) to equation of line k passes through point (6, -3) to equation of line k which passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 to the passes through point (6, -3) and perpendicular to line -4x + y			 -					 	1 1			- 1	-	 			 			1
864. 5. Determine the equation of line k passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0	863.	the coordinate of																		-
864. S. Determine the equation of line k passes through point (6, -3) and perpendicular to line -4x + y + 1 = 0 865. Ieft and right part are multiplied by 4 866. Solution 867. an equation -4x + y + 1 = 0 has general equation ax + by + c = 0 with gradient m = -b/a 868. Two lines that perpendicular has gradient m = -b/a 869. Substitute my = -1 and point (6, -3) to equation -y, y = m(x - x, y) 870. So, the equation of line k passes through point (6, -3) with gradient -4 is 871. Are you ready for a quiz? 872. Type your name then equation of line k passing through A (2, 3) with gradient -4 is 873. An equation of the line passing through A (2, 3) with gradient -3 is 875. wrong answer 876. The quation of the line passing through B (4, -6) with gradient -3 is 877. Wrong answer		intersection point of y = 3x +																		
equation of line k passes through point (6, -3) and is perpendicular to line -4x + y + 1 = 0. 865. left and right part are multiplied by 4 866. Solution 867. an equation -4x + y + 1 = 0 has general equation ax + by + c = 0 with gradient m - b/a 868. Two lines that perpendicular to line -4x + y + 1 = 0 has general equation ax + by + c = 0 with gradient m - b/a 869. substitute m ₂ = -\frac{1}{4} and point (6, -3) to equation y - y ₂ = m(x - x) 870. So, the equation of line k passes through point (6, -3) and is perpendicular to line -4x + y + 1 = 0 has general equation max + by + c = 0 with gradient m - b/a. 871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through A(2, 3) with gradient -4 is 874. An equation of the line passing through B(4, -6) with gradient -3/2 is 875. wrong answer 876. In an equation of the line passing through B(4, -6) with gradient -3/2 is 877. wrong answer		7 and y = 2x + 3 is (-4, -5)																		
## through point (6, -3) and perpendicular to line -4x + y + 1 = 0	864.	5. Determine the	٧														٧			Determine the equation of line k
## through point (6, -3) and perpendicular to line -4x + y + 1 = 0		equation of line k passes																		passes through point (6, -3) and is
Perpendicular to line -4x + y + 1 = 0 Per		_ · · · · · · · · · · · · · · · · · · ·																		- · · · · · · · · · · · · · · · · · · ·
#1 = 0																				· · ·
 865. left and right part are multiplied by 4 866. Solution 867. an equation -4x + y + 1 = 0 has general equation ax + by + c = 0 with gradient m = -b/a 868. Two lines that perpendicular has gradient my, x m₂ = -1 and point (6, -3) to equation y - y₁ = m (x - x) 870. So, the equation of line k passes through point (6, -3) and perpendicular to line - 4x + y + 1 = 0 is 4y = -x - 6. 871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through B (4, -6) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient -3 /2 is 875. wrong answer 876. So wrong answer 876. So wrong answer 877. A regulation of the line passing through B (4, -6) with gradient -3 /2 is 878. Wrong answer 879. Wrong answer 870. So have quation of the line passing through B (4, -6) with gradient -3 /2 is 870. So have quation of the line passing through B (4, -6) with gradient -3 /2 is 870. So have quation of the line passing through B (4, -6) with gradient -3 /2 is 870. So have quation of the line passing through B (4, -6) with gradient -3 /2 is 870. So have quation of the line passing through B (4, -6) with gradient -3 /2 is 871. An equation of the line passing through B (4, -6) with gradient -3 /2 is 872. Wrong answer 873. Wrong answer 874. Wrong answer 875. Wrong answer 876. Wrong answer 877. Wrong answer 878. Wrong answer 879. Wrong answer 870. So have quation of the line passing through B (4, -6) with gradient -3 /2 is 875. Wrong answer 876. Wrong answer 877. Wrong answer 878. Wrong answer 879. Wrong answer 870. Wrong answer 870. Wrong answer 870. Wrong answer 870. Wrong answer <		I																		
## Multiplied by 4 ## Solution ## Solution ## A Pull	965	-	+	-		+	+			-		+		-		-		 +		
 866. Solution 867. an equation -4x + y + 1 = 0 has general equation 3x + by + c = 0 with gradient m = - b/a 868. Two lines that perpendicular has gradient m₁ x m₂ = -1 869. substitute m₂ = - d and point (6, -3) to equation y - y₁ = m (x - x₁) 870. So, the equation of line k passes through point (6, -3) and perpendicular to line - 4x + y + 1 = 0 is 4y = -x - 6 871. Are you ready for a quit? 872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient -3 / 2 is 875. wrong answer 876. Solution 876. Solution 877. An equation of the line passing through B (4, -6) with gradient -3 / 2 is 878. Wrong answer 879. An equation of the line passing through B (4, -6) with gradient -3 / 2 is 870. An equation of the line passing through B (4, -6) with gradient -3 / 2 is 875. Wrong answer 876. Solution 876. Solution 877. Volines that perpendicular has general equation ax + by + c = 0 with gradient -4 is 878. Wrong answer 879. Wrong answer 870. Volines that perpendicular has general equation form ax + by + c = 0 with gradient -3 / 2 is 879. Wrong answer 870. Volines that perpendicular has general equation form ax + by + c = 0 with gradient -3 / 2 is 879. Vol III Sequence in form ax + by + c = 0 with gradient -3 / 2 is 879. Wrong answer 870. Wrong answer 870. Wrong answer 870. Wrong answer 871. Wrong answer 872. Wrong answer 873. Wrong answer 874. Wrong answer 875. Wrong answer 876. Wrong answer 876. Wrong answer 877. Wrong answer 878. Wrong answer 879. Wrong answer 870. Wrong answer 870. Wrong answer<td>803.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td>	803.																			_
867. an equation -4x + y + 1 = 0 has general equation ax + by + c = 0 with gradient m = - b/a 868. Two lines that perpendicular has gradient m ₁ x m ₂ = -1 substitute m ₂ = -\frac{1}{4} and point (6, -3) to equation of line k passes through point (6, -3) to equation of line k passes through point (6, -3) to equation of line k passes through point (6, -3) and perpendicular to line - 4x + y + 1 = 0 is 4y = -x - 6 871. Are your ready for a quiz? 872. Type your name then pressenter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient -\frac{3}{2} is 875. wrong answer 876. Type your name when pressenter 877. The equation of the line passing through B (4, -6) with gradient -\frac{3}{2} is 877. Wrong answer	000				1			-												
has general equation $ax + by + c = 0$ with gradient $m = -b/a$. 868. Two lines that perpendicular has gradient $m_1 \times m_2 = -1$ 869. substitute $m_2 = -\frac{1}{4}$ and point $(6, -3)$ to equation $y = -\frac{1}{4}$ and point $(6, -3)$ to equation $y = -\frac{1}{4}$ and point $(6, -3)$ to equation $y = -\frac{1}{4}$ and point $(6, -3)$ to equation $y = -\frac{1}{4}$ and point $(6, -3)$ to equation $y = -\frac{1}{4}$ and point $(6, -3)$ to equation of line $y = -\frac{1}{4}$ and point $(6, -3)$ to equation of $y = -\frac{1}{4}$ and point $(6, -3)$ and is and perpendicular to line $y = -\frac{1}{4}$ and point $(6, -3)$ and is passes through point $(6, -3)$ and is passes through point $(6, -3)$ and is perpendicular to line $y = -\frac{1}{4}$. 872. Type your name then press enter 873. An equation of the line passing through A $(2, 3)$ with gradient $y = -\frac{1}{4}$ and $y = -\frac$			_		 	-	-		+	-		-			\vdash	_	-	 _	-	-
## C = 0 with gradient m= - b/a Season Two lines that perpendicular Name	867.		٧		٧												٧			
868. Two lines that perpendicular has gradient m₁ x m₂ = -1 869. substitute m₂ = -¼ and point (6, -3) to equation y - y₂ = m (x - x₁) 870. So, the equation of line k passes through point (6, -3) and perpendicular to line - 4x + y + 1 = 0 is 4y = -x - 6 871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - 3/2 is 875. wrong answer Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1. Two lines that are perpendicular has gradient m₁ x m₂ = -1.																				· · · · · · · · · · · · · · · · · · ·
 868. Two lines that perpendicular has gradient m₁ x m₂ = -1 869. substitute m₂ = - ¼ and point (6, -3) to equation y - y₁ = m (x - x₁) 870. So, the equation of line k passes through point (6, -3) and perpendicular to line - 4x + y + 1 = 0 is 4y = -x - 6 871. Are you ready for a quit? 872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient - 4 is 874. An equation of the line passing through B (4, -6) with gradient - 3/2 is 875. wrong answer 876. Two lines that are perpendicular has gradient m₁ x m₂ = -1. 876. V V V V V V V V V V																				gradient m= -b/a.
has gradient $m_1 \times m_2 = -1$ 869. substitute $m_2 = -\frac{1}{4}$ and point $(6, -3)$ to equation $y - y_1 = m(x - x_1)$ 870. So, the equation of line k passes through point $(6, -3)$ and perpendicular to line - $4x + y + 1 = 0$ is $4y = -x - 6$. 871. Are you ready for a quit? 872. Type your name then press enter 873. An equation of the line passing through A $(2, 3)$ with gradient -4 is 874. An equation of the line passing through B $(4, -6)$ with gradient $-\frac{3}{2}$ is 875. wrong answer 876. wrong answer An end and an equation of the line passing through B $(4, -6)$ with gradient $-\frac{3}{2}$ is		•																		
869. substitute $m_2 = -\frac{1}{4}$ and point $(6, -3)$ to equation $y - y_1 = m(x - x_1)$ 870. So, the equation of line k passes through point $(6, -3)$ and perpendicular to line $-4x + y + 1 = 0$ is $4y = -x - 6$ 871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through A $(2, 3)$ with gradient -4 is 874. An equation of the line passing through B $(4, -6)$ with gradient $-\frac{3}{2}$ is 875. wrong answer	868.		٧														٧			
point (6, -3) to equation y – y ₁ = m (x - x ₁) 870. So, the equation of line k passes through point (6, -3) and perpendicular to line - 4x + y + 1 = 0 is 4y = -x - 6 871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - 3 is 875. wrong answer		has gradient $m_1 \times m_2 = -1$																		has gradient $m_1 \times m_2 = -1$.
No. So, the equation of line k No. So, the equation of line No. So, the equation of line k No. So, the equation of line k No. So, the equation of line k No. So, the eq	869.	substitute $m_2 = -\frac{1}{4}$ and																		-
870. So, the equation of line k passes through point (6, -3) and is perpendicular to line - 4x + y +1 = 0 is 4y = -x - 6. 871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - 3/2 is 875. wrong answer		point (6, -3) to equation y –																		
passes through point (6, -3) and is and perpendicular to line - 4x + y +1 = 0 is 4y = -x - 6 871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - $\frac{3}{2}$ is 875. wrong answer		$y_1 = m (x - x_1)$																		
passes through point (6, -3) and is and perpendicular to line - 4x + y +1 = 0 is 4y = -x - 6 871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - $\frac{3}{2}$ is 875. wrong answer	870.	So, the equation of line k	٧														٧			So, the equation of line k which
and perpendicular to line - $4x + y + 1 = 0$ is $4y = -x - 6$. 871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - $\frac{3}{2}$ is 875. wrong answer																				
4x + y + 1 = 0 is 4y = -x - 6 is 4y = -x - 6. 871. Are you ready for a quiz? is 4y = -x - 6. 872. Type your name then press enter intercept of the line passing through A (2, 3) with gradient -4 is 873. An equation of the line passing through A (2, 3) with gradient -4 is is 874. An equation of the line passing through B (4, -6) with gradient - 3/2 with gradient - 3/2 is is 875. wrong answer is 4y = -x - 6. <																				· · · · · · · · · · · · · · · · · ·
871. Are you ready for a quiz? 872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - $\frac{3}{2}$ is 875. wrong answer																				
872. Type your name then press enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - $\frac{3}{2}$ is 875. wrong answer	871.				1 1															-
enter 873. An equation of the line passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - $\frac{3}{2}$ is 875. wrong answer The equation of the line passing through B (4, -6) with gradient - $\frac{3}{2}$ is																				_
passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - $\frac{3}{2}$ is 875. wrong answer Through A (2, 3) with gradient - $\frac{3}{2}$ is through A (2, 3) with gradient - $\frac{3}{2}$ is through A (2, 3) with gradient - $\frac{3}{2}$ is	0,2.																			
passing through A (2, 3) with gradient -4 is 874. An equation of the line passing through B (4, -6) with gradient - $\frac{3}{2}$ is 875. wrong answer Through A (2, 3) with gradient - $\frac{3}{2}$ is through A (2, 3) with gradient - $\frac{3}{2}$ is through A (2, 3) with gradient - $\frac{3}{2}$ is	873.						V				1 1						٧			The equation of the line passing
gradient -4 is is is V The equation of the line passing through B (4, -6) with gradient $-\frac{3}{2}$ is is V S75. wrong answer		I																		· · · · · · · · · · · · · · · · · ·
874. An equation of the line passing through B (4, -6) with gradient $-\frac{3}{2}$ is 875. wrong answer The equation of the line passing through B (4, -6) with gradient $-\frac{3}{2}$ is																				
with gradient $-\frac{3}{2}$ is is is 2 875. wrong answer	874.	_					٧										٧			
with gradient $-\frac{3}{2}$ is is is 2 875. wrong answer		passing through B (4, -6)																		through B (4, -6) with gradient $-\frac{3}{2}$
875. wrong answer																				2
	875.	wrong answer																		-
	876.	i																		-

877.	An equation of the line passing through points (0, 2) and (-1, -3) is			٧								٧			The equation of the line passing through points (0, 2) and (-1, -3) is
878.	An equation of the line passing through points (-4, 8) and (6, -2)			٧								٧			The equation of the line passing through points (-4, 8) and (6, -2).
879.	An equation of the line passing through points (4, 3) and parallel to line y = 2x + 3 is	٧		٧								٧			The equation of the line passing through points $(4, 3)$ and is parallel to line $y = 2x + 3$ is
880.	An equation of the line parallel to line 6x – 2y + 1 = 0 and passes through (-1, 2) is			٧								٧			The equation of the line parallel to line $6x - 2y + 1 = 0$ and passes through $(-1, 2)$ is
881.	An equation of a perpendicular line 2x + 3y – 5 = 0 and passes through D (-9, -6) is			٧								٧			The equation of a perpendicular line 2x + 3y - 5 = 0 and passes through D (-9, -6) is
882.	An equation of the line passing through point $(6, -3)$ and perpendicular to line $y = 4x - 1$ is	٧		٧								٧			The equation of the line passing through point $(6, -3)$ and is perpendicular to line $y = 4x - 1$ is
883.	Coordinates of the point of intersection of lines $3x - y + 14 = 0$ and $2x + y = -1$ is														-
884.	A point of intersection of lines k and m with equations $y = 3x + 5$ and $2y = 7x + 12$ is														-
885.	Evaluation Result														-
886.	Number of questions = 10														-
887.	right answer = 2														-
888.	your score is = 20														-
889.	Are you ready for Evaluation?														-
890.	type your name than press			٧								٧			Type your name then press the

	the enter button	1	1	1										1 1				T			_			enter button.
891.	An equation of line 2x – 4y =						_	-	+		-		-	+	\dashv	+		-	\vdash		+	-		enter button.
691.																								-
	12 will intersect y-axis at point																							
002					-	_			+			-		+		+		-				-	_	
892.	Draw an equation of line 3y																							-
000	= 2x - 6				-	_	-		-					-	_	+	-				_		_	
893.	your answer is correct					_			_					1		_					-			-
894.	The following graph has																							-
	equation				_	_			-			_				_		-						
895.	The gradient of line -3x + 9 =																							-
	5y + 3 is																							
896.	The gradient of line 2x – y +																							-
	3 = 0 is																							
897.	The gradient of line 8y = -2x																							-
	+ 21 is																							
898.	The gradient of the line																							-
	passing through points (2, -																							
	5) and (4, 6) is																							
899.	If D (-4, 7) and E (5, -2), then																							-
	the gradient of line DE is																							
900.	If the gradient of the line																							-
	passing through points B (4,																							
	n) and C (-4, 2n) is -1, then n																							
	=																							
901.	In line y = mx + n passing																							-
	through point (4, 6) and (-2,																							
	3), the value of m + n is																							
902.	The gradient of the line																							-
	passing through points (0, 0)																							
	and (2, 8) is																							
903.	The equation straight line	٧																	٧					The equation of straight line, which
	which through point (2, 4)																							passes through point (2, 4) with
	with gradient 4																							gradient 4, is
904.	An equation of the line					V													٧					The equation of the line passing
	passing through points K (-1,																							through points K (-1, 4) and L (2, 3)
	4) and L (2, 3) is																							is

905.	A line which has a negative		П										1			_
505.	gradient is															
906.	An equation of the line paasing through point (4, -2) and gradient 3 is			٧								ν				The equation of the line passing through point (4, -2) and gradient of 3 is
907.	A line parallel to 3x = -y - 8 and passes through point (- 1, 6) is															-
908.	A gradient of line which perpendicular to line 2y = -x – 2 is	٧										V				Put to be into the sentence, so that: A gradient of line which is perpendicular to line 2y = -x - 2 is
909.	A line L intersects y – axis at point (0, -4) and intersects x-axis at point (2, 0)															-
910.	which one is parallel to L															-
911.	An equation of a line passing through point I (2, -4) and parallel to y-axis is	٧		٧								V				The equation of a line passing through point I (2, -4) and is parallel to y-axis is
912.	An equation of a line passing through point (3, -9) and perpendicular to a line passing through point (8, 5) and (-1, 14) is	٧		٧								V				The equation of a line passing through point (3, -9) and is perpendicular to a line passing through point (8, 5) and (-1, 14) is
913.	Line P perpendicular to a line passing through points K (-5, 7) and L (4, -5) the gradient og line P is	٧		٧								ν				Line P is perpendicular to a line passing through points K (-5, 7) and L (4, -5) the gradient of line P is
914.	An equation of lines K and L is respectively $y = 5x - 6$ and 5y + x + 10 = 0.															-
915.	the relationship of line K and L is															-
916.	Intersection on (-6, 10)															-
917.	adjecent								٧	1				ν	1	adjacent
918.	perpendicular															-

919.	parallel																-
920.	An equation of a line passing through points (-4, 4) and perpendicular to line $3y = -2x + 12$ is	٧			٧									٧			The equation of a line passing through points (-4, 4) and is perpendicular to line 3y = -2x + 12 is
921.	Coordinates of the point of intersection of the lines $y + x - 5 = 0$ and $x - y - 3 = 0$ is																-
922.	evaluation result																-
923.	Total question = 25																-
924.	correct answer = 4																-
925.	your score is 16																-

Table 4. System of Linear Equation with two Vaiables

No	Item									Т	ype	s of	Err	ors											С	ause	es c	of Er	ror	S		Alternative Corrections
					(Overt	err	ors								С	ove	ert e	rror	S				I	I	С	Co	mm	unic	atio	on	
			nissio	n	addi			lectio			derin			issior	_	Addi			Select			derin		n	n			ateg				
		М	L	S	M	L S	M	l L	S	M	L	S	М	L	S	МΙ	L :	S	M L	S	M	L	S	t	t	n	Α		С	Α	L	
																								е	r	t	٧	r	О	p	а	
																								r	а							
926.	The application of SLETV in daily life																															_
927.	Dinda bought 5 books and 3																															-
	pens in a shop, the price																															
	was Rp 65.000																															
928.	Yuda bought 4 books and 2																															-
	pens in the same shop with																															
	a Rp. 100.000 paper money																															
929.	Reviewing linear equations																															_
	with one variable																															
930.	In the previous chapter, you																															_
	have learned linear																															
	equations with one variable.																															
931.	Do you still remember about																															-
	that lesson?																															
932.	If the price of two apples is																															-
	Rp. 10. 000 can you find the																															
	price of 1 apple?																															
933.	The price of an apple is x																															-
934.	We can get such an																															-
	equation as follows: 2x = Rp																															
	10.000																															
935.	The value of x of the above																															-
	equations is therefore x =																															
	5000					_										_				1												
936.	Remember! When the value																															_
	of x is known, x is a variable.															_			_													
937.	the open sentence $2x = 10$.																															_

	000 uses the sign "="										1	1 1			T								
938.	An open sentence that uses	-	++	+	+	+	+		\dashv	-	+	+		+	+		$\vdash \vdash$	-	-	+	+	-	_
936.	the sign "=" is called an																						_
	equation.																						
939.	If the highest power of a					+																	_
333.	variable in an equation is																						
	one, then the equation is																						
	called a linear equation.																						
940.	A linear equation that only												<u> </u>										_
3 .0.	has only one variable is																						
	called a linear equation with																						
	variable.																						
941.	Thus, the equation of 2x =														1								-
	10.000 is an example of a																						
	linear equation with one																						
	variable.																						
942.	Remember the following																						-
	three principles for solving																						
	problems of linear equation																						
	with one variable:																						
943.	To add a certain number to																						-
	both sides																						
944.	To subtract a certain																						-
	number from both sides																						
945.	To divide or multiply both																						-
	sides by any certain number,																						
	and not zero.																						
946.	The common formula of a																						-
	linear equation with one																						
	variable is : $ax + by = 0$ with																						
	a ≠ 0 and b is a real number.																						
947.	x is called a variable																						-
948.	a is called a coefficient																						-
949.	b is called a constant														1_								-
950.	The substitute of a variable							٧										٧					The substitution of a variable in a
	in a such way that the																						such way that the equation

	equation become true is called a solution of the equation																becomes true is called a solution of the equation.
951.	Given the equation ax + by = 0, if x is changed into -b/a so the value of x = -b/a fulfills the following equations ax + by = 0		V										٧				The equation $ax + by = 0$, if x is changed into -b/a so the value of $x = -b/a$ fulfills the following equations $ax + by = 0$.
952.	o, $x = -b/a$ is the solution of the equation $ax + by = 0$																-
953.	The sets of all equation is called the solution set			١	/									٧			The sets of all equations are called the solution sets.
954.	in the equation ax + by = 0 the solution set is {-b/a}																-
955.	To understand the concept of linear equations with two variables better, find the answers of the following questions: is there the sign "="?																=
956.	what is the number of variable?																-
957.	what is the value of the highest power of the variable?																-
958.	in the following equations and determine which equations one linear equations with two variables											٧		٧			In the following equations, determine which one is linear equation with two variables.
959.	X + 9 = 5 LETV																
960.	4a – 2 = 9 not LETV because the equation only has one variable	٧												٧			4a - 2 = 9 is not LETV because the equation only has one variable.
961.	Find the solution set of the following equations;																-

	1			-1							1 1					1							1
962.	Solution part a																						-
963.	thus, the solution set is {4}																						-
964.	Part b																						_
965.	thus, the solution set is {-4}																						-
966.	Write down the following																						-
	statements in the form of																						
	the linear equation of two																						
	variables																						
967.	a. The difference of length																						-
	and width of a																						
	rectangular is 5																						
968.	b. Three times first	٧				٧												٧					Three times of first number plus
	number plus two times																						twice of second number is 24.
	second number is 24																						
969.	Solution part a																					T	_
970.	If the length of a rectangular																					Ī	_
	is p, and its width is L, then																						
	the linear equation of two																						
	variables is p-L = 5																						
971.	Part b																						_
972.	if the first number is m, and																					Ť	_
	the second number is n,																						
	then the linear equation of																						
	two variables is 3m+2n = 24																						
973.	Write down the following																						_
	statements in the form of																						
	the linear equation with two																						
	variables.																						
974.	a. The sum of two					\dashv		\top		1					1		1				\top	1	_
	numbers is 20																						
975.			-			\dashv	+	+	-	\vdash		+	+	-			+		+	-	+	+	_
3/3.	b. Two times first number																						_
	minus three times																						
076	second number is 5		_			_		_	-	-					-							-	
976.	Solution part a																						-

	1		 		, ,		 		 			_	,			 		 	 	
977.	if the numbers are x and y,																			-
	then the linear equation																			
	with two variables is $x + y =$																			
	20																			
978.	Part b																			-
979.	if the first number is a and																			-
	the second number is b,																			
	then the linear equation																			
	with two variables is 2a-3b =																			
	5																			
980.	Find the solution set of the	٧				٧		٧									٧			Find the solution set of the
	equation: 2x-y+4=0 with the																			equation: $2x - y + 4 = 0$ with x is a
	x member of collection {-2, -																			member of collection {-2, -1, 0, 1,
	1, 0, 1, 2} and y member of																			2,} and y is a member of integer
	integer, then draw the																			then draw the graph.
	graph.																			
981.	Solution																			
982.	to determine a pair of x and																			_
	y in order to meet the																			
	equation 2x-y+4=0, follow																			
	the following steps.																			
983.	Thus, the solution set is																			_
	{(2,0), (-1, 2), (0,4) (1, 6),																			
	(2,8)}																			
984.	Graph solution																			_
985.	Knowing the solution set is			٧												٧				The solution set is {(-2, 0), (-1, 2),
	{(-2,0), (-1,2), (0,4), (1,6),																			(0, 4), (1, 6), (2, 8)}.
	(2,8)}																			
986.	Using the ordered pairs as										٧						٧			Using the ordered pairs as the
	the points of coordinate																			points of coordinate pair, we will
	pair, then we will get the																			get the following graph.
	following graph.																			
987.	There are two equally long																			There are two pipes with the same
	pipes.																			length.
988.	The equation of each length																			-
	is 3x cm and 2x+5 cm																			

			1			1 1	 		 	 			 			-	
	respectively.							_									
989.	Find the length of the pipes.																_
990.	Solution																_
991.	equation 3x = 2x+5																-
992.	3x-2x = 5																-
993.	thus, for x = 5, 3x = 3. 5 = 15																-
994.	Then, the length of the																_
	pipes is 15 cm																
995.	Are you ready for a quiz?																-
996.	Type your name then press																-
	enter																
997.	Given x-4 = 8, the value of x			٧									٧				x-4 = 8, the value of x is
	is																
998.	Right answer																-
999.	For x = members of an																-
	interger set, the solution of																
	set 4x+5 = 2x+1 is																
1000	Check answer																-
1001	right answer																-
1002	Given $3x+2 = 7$, the value of			٧									٧				Eliminate the word given, so that:
	x is																3x+2 = 7, the value of x is
1003.	Given $2(x-3) - 3(x+4) = 8$, the			٧									٧				2(x-3) - 3(x+4) = 8, the value of x is
	value of x is																
1004.	Given $2(x-5)-4(2x-1) = -x-3$,			٧									٧				2(x-5)-4(2x-1) = -x-3, the value of x
	the value of x is																is
1005.	Given a + (a+3) + 3(a+4) =			٧									٧				a + (a+3) + 3(a+4) = 50, the value of
	50, the value of x is																x is
1006.	Given $2x/3 = -4$, the value of			٧									٧				2x/3 = -4, the value of x is
	x is																
1007.	The solution of set 3x-9 = -																-
	18 is																
1008.	Two times first number	٧				٧								٧			Twice of first number subtracted
	subtracted by three times																by three times of second number is
	second number is 5.																5.
1009.	Write it in the form of a																-

length. Each length is 3x - 2cm and 2x + 4cm respectively. 1011. Determine the sum of the length of the pipes. 1012. Evaluation result		,	 		 			, ,							 	
length. Each length is 3x - 2cm and 2x + 4cm respectively. 1011. Determine the sum of the length of the pipes. 1012. Evaluation result																
length of the pipes. Levaluation result	1010.	length. Each length is 3x-2 cm and 2x+4 cm		٧	٧							٧				Each length is 3x – 2cm and 2x +
1013. number of questions = 10 1014. right answer = 10 1015. your total point = 100 1016. Linear Equation system with two Variables 1017. The definition of a system of linear equations with two variables is a system of two or more linear equations with two variables. Sustem of linear equations with two variables (SLETV) better, study at the illustrations bellow 1019. M and N are are variables 1021. SLETV has it normal form 1022. The variables variable two lates of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two	1011.	Determine the sum of the														-
1014. right answer = 10 1015. your total point = 100 1016. Linear Equation system with two Variables 1017. The definition of a system of linear equations with two variables is a system of two or more linear equations with two variables. 1018. To understand a system of linear equations with two variables (SLETV) better, study at the illustrations bellow bellow 1019. M and N are are variables 1020. 3, 6, 5, and 2 are the coefficients 1021. SLETV has it normal form 1022. The variables vacause the values of x and y are a single solving set and those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs are related to each other.	1012.	Evaluation result														-
1015. your total point = 100	1013.	number of questions = 10														-
1016. Linear Equation system with two Variables 1017. The definition of a system of linear equations with two variables is a system of linear equations with two variables. 1018. To understand a system of linear equations with two variables. 1018. To understand a system of linear equations with two variables (SLETV) better, study at the illustrations bellow bellow 1019. M and N are are variables 1020. 3, 6, 5, and 2 are the coefficients 1021. SLETV has it normal form 1022. The variables x and y from those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs are related to each other.	1014.	right answer = 10														-
two Variables The definition of a system of linear equations with two variables is a system of two or more linear equations with two variables. To understand a system of linear equations with two variables (SLETV) better, study at the illustrations bellow M and N are are variables M and N are are variables SLETV has it normal form The variables x and y from those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs are related to each other.	1015.	your total point = 100														-
linear equations with two variables is a system of two or more linear equations with two variables. 1018. To understand a system of linear equations with two variables (SLETV) better, study at the illustrations bellow 1019. M and N are are variables 1020. 3, 6, 5, and 2 are the coefficients 1021. SLETV has it normal form 1022. The variables x and y from those two LETVs are related to each other.	1016.															-
linear equations with two variables (SLETV) better, study at the illustrations bellow 1019. M and N are are variables 1020. 3, 6, 5, and 2 are the coefficients 1021. SLETV has it normal form 1022. The variables x and y from those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs are related to each other.	1017.	linear equations with two variables is a system of two or more linear equations														_
1020. 3, 6, 5, and 2 are the coefficients 1021. SLETV has it normal form 1022. The variables x and y from those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs are related to each other.	1018.	linear equations with two variables (SLETV) better, study at the illustrations		٧								٧				equations with two variables (SLETV) better, study the
coefficients 1021. SLETV has it normal form 1022. The variables x and y from those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs are related to each other.	1019.	M and N are are variables														_
The variables x and y from those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs are related to each other.	1020.															-
those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs are related to each other.	1021.	SLETV has it normal form														
	1022.	those two LETVs have the same value, because the values of x and y are a single solving set and those two LETVs are related to each														-
	1023.												1			_

			 	 	 	 	 		 	 		 			 _	
	and SLETV															
1024.	It consists of a linear														-	-
	equation with two variables															
1025.	it consists of two linear														-	-
	equation with two variables															
1026.	It has many solving sets.														-	-
1027.	it has single solving set	٧										٧			It has a single solv	ing set.
1028.	The solving set fulfills one														-	-
	LETV															
1029.	its solving set fulfills both														-	-
	SLETV															
1030.	The root and not the root of														-	-
	SLETV															
1031.	Suppose a system of linear														-	-
	equations with two															
	variables is given as follows:															
1032.	If $ax_1 + by_1 = e$														-	-
	$Cx_1 + dy_1 = f$, The pair of the															
	value $x = x_1$ and $y = y_1$ is the															
	solution or the root of SLETV															
1033.	If $ax_2 + by_2 = e Cx_2 + dy_2 \neq f$,														-	-
	The pair of the value $x = x_2$															
	and $y = y_2$ is not the solution															
	or not the root of SLETV															
1034.	If If $ax_3 + by_3 \neq e Cx_3 + dy_3 =$														-	-
	f, The pair of the value $x = x_3$															
	and $y = y_3$ is not the solution															
	or not the root of SLETV															
1035.	If If $ax_4 + by_4 \neq e Cx_4 + dy_4 \neq$														-	-
	f, The pair of the value $x = x_4$															
	and $y = y_4$ is not the solution															
	or not the root of SLETV															
1036.	The meaning of the square														-	-
	root of $x = x_1$ and $y = y_1$ is															
	both of the values, not one															
	of them, so either $x = x_1$ or y															

					-			1 1		- 1	- 1					П				
	= y ₁ only is not the root of																			
	that SLETV											-								
1037.	Summary																		-	
1038.	A system of linear equations																		-	
	with two variables (SLETV)																			
	has two or more united																			
	linear equations.																			
1039.	Commonly, the SLETV is																		-	
	written as follows:																			
1040.	The root or the solution of																		-	
	the SLETV is the values of x																			
	and y that fulfill every																			
	equation in the SLETV																			
1041.	Using the substitution																		-	
	method, find the solution																			
	set of each SLETV																			
1042.	Solution																		-	
1043.	step 1: change equation (1)																		-	
	into:																			
1044.	Step 2 : Substitute equation																		-	
	(3) into equation (2)																			
1045.	STEP 3 : Substitute value x =																		_	
	10 into equation (3), and the																			
	value y will be found.																			
1046.	Thus, the solution set is {(10,																		_	
	24)}																			
1047.	Determine variables,																		_	
	coefficients, and constants																			
	of the following SPLDV																			
1048.	Solution																		-	
1049.	a. the variables are x and y.																		_	
1050.	The coefficients of the																		-	
	equation 4x-2y = -2 are 4																			
	and -2		[[[
1051.	The coefficients of the																		-	

	T	1 1		1 1		1 1	 1			ı ı		1 1			1	
	equation x+4y = 5 are 1 and															
	4													-		
1052.	the constant is 5															-
1053.	The variables are a and b															_
1054.	The coefficients of the															-
	equation 9a+12b = 42 are 9															
	and 12															
1055.	the constant is 42															-
1056.	The coefficients of the															-
	equation a – 5b = -8 are 1															
	and -5															
1057.	the constant is -8															-
1058.	Using the elimination															-
	method, find the solution															
	set of each SLETV															
1059.	Solution															-
1060.	thus, the solution set is {(3,															-
	4)}															
	Using the substitution															_
	method, find the solution of															
	each SLETV															
1061.	Change any equation															_
	(example: equation (1)) by															
	declaring one variable into															
	other variable.															
1062.	Equation (1) is changed as															_
	follows															
1063.	Substitute equation (3) into															_
	equation (2)															
1064.	Substitute the value y = -1															-
	into equation (3) so that															
	value x will be found.															
1065.	Thus, the solution set is {(5, -															_
	1)}															
1066.	The difference between two															_

	numbers is two.														
1067.	If multiplied by 2, the second number is 8 bigger than the first number, find the two numbers.	٧	٧									V			If it is multiplied by 2 the second number is 8 times bigger than the first number. Find the two numbers.
1068.	If the first number is x, and the second number is y, the mathematics model is														-
1069.	Thus, the numbers are 12 and 10.														-
1070.	Are you ready for a quiz?												1		-
1071.	type your name then press enter														-
1072.	Given $2x+y = 11$ and $x-y = -2$, the value of x and y is			٧								٧			2x+y = 11 and x-y = -2, the value of x and y is
1073.	Wrong answer														-
1074.	If x, y, are set of interger, then value of x and y to meet 2x + y = 5 is														-
1075.	The graph below shows the sets of following equation														-
1076.	Given x, y are members of set R.			٧								٧			x, y are members of set R.
1077.	the solution of the set for the equation 2x + y = 7 and 2x-y = 1 is														-
1078.	The solution of the set for the equation 2x + 3y = 10 and 3x-2y = 2 is														-
1079.	Given the price of 3 thin books and two thick books is Rp. 3.000.			٧								٧			The price of 3 thin books and two thick books is Rp. 3.000.

	I		 			 	1										
1080.	The price of the three thin																-
	books is Rp 750 more																
	expensive than price of one																
	thick book.																
1081.	The price of the thick book																-
	is																
1082.	The solution of the set for																-
	the equation 3x-2y = 1 and																
	2x + 3y = 18 is																
1083.	The solution set for the																-
	linier equation x+y = 5 and																
	x-2y = 14 is																
1084.	A merchant sold 8 mangoes	٧											٧	/			A merchant sold 8 mangoes and 12
	and 12 apples with the price																apples with the price of Rp.4000.
	Rp. 4000																
1085.	He also sold 16 mangoes	٧											٧	/			He also sold 16 mangoes and 8
	and 8 apples, with the price																apples, with the price of Rp.5600.
	Rp 5600																
1086.	The price 1 mango and 1																-
	apple was																
1087.	The price of 15 books and 10																-
	pencils is Rp 7500																
1088.	The price of 6 books and 5																-
	pencils is Rp 3150																
1089.	What is the price of 3 books																-
	and 4 pencils?																
1090.	Evaluation Result																-
1091.	Number of questions																-
1092.	Right answer																
1093.	Your total point																-
1094.	Are you ready for																-
	evaluation?																
1095.	Type your name than press				٧									٧			Type your name then press the
	the enter button.																enter button.

	Г						 	-1	1	1 1	- 1	1	1 1		1 1		T
1096.	Given , at t=12 second, the		٧											٧			At t=12 second, the speed of a
	speed of a motorbike of a																motorbike of a racer is 56 m/s.
	racer is 56 m/s.																
1097.	At t=1 minute, the speed																-
	becomes 68 m/s.																
1098.	Determine the acceleration																_
	of the motorbike?																
1099.	Use the formula V1= V0 + at																-
1100.	Your answer is incorrect																-
1101.	Find the solution of 3y + 5 =																-
	4y-1 is																
1102.	Mr. Budi's field is																_
	vectangular .																
1103.	It's perimeter is 240 m.				٧									٧			Its perimeter is 240 m.
1104.	If the length of the field is																_
	twice the width, the area of																
	field is m ²																
1105.	The sum of two numbers is																_
	25, and their difference is 15																
1106.	The product of two number																
	is																
1107.	Mr cokro has a park.																
1108.	It's perimeter is 280 m.				٧									٧			Its perimeter is 280 m.
1109.	If its width is 20 m less than																_
	the length, the area of the																
	park is m ²																
1110.	The sum of a number																_
	consisting of two digits is 10.																
1111.	If the position of the																_
	number is interchanged,																
	then the different of the																
	number is 18 more than the																
1	previous one.																
1112.	The number is															1	_
1113.	Mr Adam bought 2 reams of																_

	I		1 1	1 1		1 1			1 1			I I		-	1 1		1					T	
	papers and three type writer																						
	ribbons with the price of Rp																						
	78,000																						
1114.	Mr Ari bought 3 reams of																						-
	papers and 2 type writer																						
	ribbons with the pricw of Rp																						
	87,000																						
1115.	If Mr Halim bought 1 ream																						_
	of paper and 1 type writer																						
	ribbon, how much did he																						
	pay for it?																						
1116.	Your answer is correct																						_
1117.	The age of a father is 27	\vdash	+	++			-	+		+			+		+ +		+		+		+		
1117.	year older than his children.																						
1118.	Seven years later, the sum														+ +								
1110.																							_
1110	of their age is 53 years.														1								
1119.	Determine the sum of their																						_
	age now.																						
1120.	In the money box, there are																						-
	600 five-hundred and one-																						
	thousand coins.																						
1121.	If the sum of the money is																						_
	457, 500. 00. Find the																						
	number of each type of																						
	coin.																						
1122.	Two years ago, the age of																						_
	the father was 6 times his																						
	child age.																						
	oa ager																						
1123.	18 years later, his age was														1 1				1 1				_
	be two times his child age.																						
1124.	Find out their age now.														1 1				1 1				_
1125.	In a wallet there are 25		+	++			\dashv			+					+	-	_		+				_
1123.	pieces of five-thousand and																						
	ten-thousand paper money.																						
1126.	The sum of the money is		+++	+ +	-		-				-				+ +		-	+	+				
1126.	The sum of the money is																					1	_

	T	1		-1		 	ı ı		-	1 1	 - 1	- 1	 	- 1	_	 	 T	
	200,000,00.																	
1127.	What is the number of five-																-	
	thousand paper money?																	
1128.	Dinda bought 5 books and 3																-	
	pencils at Toko Merah, and																	
	the price is price was Rp 19,																	
	250.00.																	
1129.	Laras bought 2 books and 1																_	
	pencil in the same shop.																	
1130.	Their price was Rp.																_	
	7,250.00.																	
1131.	Yuda bought 4 books and 2																_	
	pencils in the same shop																	
	and gave the shop assistant																	
	a fifty-thousand papaer																	
	money.																	
1132.	What was the change Yuda																_	
	received?																	
1133.	The perimeter of the																_	
	rectangular field is 48m.																	
1134.	Its length is 6m longer than																_	
	its width.																	
1135.	The area of filed.																-	
1136.	A 40 kg mixed rice is worth																_	
	Rp 2,350.00 per kg.																	
1137.	The mixed rice consists of																_	
	two types rice worth the																	
	price of Rp. 2,200.00 per kg																	
	and 2,500.00 per kg																	
	respectively.																	
1138.	Find the amount of each																	
	type of rice ?																	
1139.	Total Question = 14																-	
1140.	Correct answer = 1																_	
1141.	Your Score is = 7.14							T									_	

Table 5. Phytagorian Theorem

No	Item									T	ype	s of	Err	ors											Ca	ause	es o	f Er	rors	5		Alternative Corrections
					(Over	t er	rors								C	ove	rt e	rors					I	1	С	Cor	nmı	unic	atic	n	
			nissic		addi			Select			derin			issior	_	Addit			electi			dering		n	n		stra					
		М	L	S	M	LS	ſ	M L	S	М	L	S	Μ	L	S	ML	_ 5	S	ΛL	S	M	L	S	t	t	n	Α		С	Α	L	
																								~		t	٧	r	0	р	а	
1142.	Pythagorean Theorem																							r	а							
1143.	Langkah 1 langkah 2						+	V							+																٧	step 1 step 2 step 3 step 4 step 5
1143.	langkah 3 langkah 4																														٠	step 1 step 2 step 3 step 4 step 3
	langkah 5																															
1144.	What can you conclude?																															-
1145.	Is each shape a triangle?																															-
1146.	Is each shape a right																															-
	triangle?																															
1147.	How to determine the																															1
	length of hypotenuse of the																															
	right triangle?																															
1148.	Can Pythagorean theorem																															-
	be used to determine it?																															
1149.	Discovering theorem																															-
1150.	Discovering the Pythagorean																															_
	theorem version 1														-																	
1151.	Rayhan is playing on the wet																															-
1152.	ground. His feet tracks as shown in																															
1152.	the following figure.																															_
1153.	he moves from A to B 8						-																									_
1100.	steps, and then to C 6 steps.																															_
1154.	How many steps must he			H		+	+		1						+		+	+	-					+	\dashv	+						
1134.	move if he moves straight																															
	from A to C without																															
	turning?																															
1155.	If one square unit																								\neg							-
	represents one step that																															

	I				1						1					
	Rayhan makes, then his trip															
	can be easily sketched on a															
	piece of grid paper as															
	follows.				_									-		
1156.	To calculate how many															_
	steps Rayhan has to move															
	from A straight to C, we can															
	use another piece of grid															
	paper.															
1157.	Click the following															-
	simulation button.															
1158.	Using the following figure,															_
	now we can add a square to															
	each side.															
1159.	Click the following															-
	simulation button.															
1160.	Look carefully at the result															-
	of simulation!															
1161.	What can you conclude?															-
1162.	Is the sum of the squared		٧										٧			Is the sum of the squared length of
	length of the right sides is															the ride sides equal to the squared
	equal to the squared length															length of the hypotenuse?
	of the hypotenuse?															
1163.	Look carefully at the result															-
	of the simulation above!															
1164.	It can be concluded that the															-
	sum of the areas of two															
	small squares is the same as															
	the area of the largest															
	square.															
1165.	Conclusion										İ					-
1166.	What do you think of the															_
	following conclusion?															
1167.	In a right triangle, the sum															-
	of the square length of the															
	right sides is equal to the															

	1 11 611	ı ı	1		- 1	1 1	 1	1 1		П			1 1	1	1 1	 1	1		
	square length of the																		
	hypotenuse.				_	1	_		-	-	_		-	_	\vdash	_	-		
1168.	The above conclusion is																		_
	called the Pythagorean																		
	theorem.						_												
1169.	Discovering Pythagorean																		-
	theorem version 2																		
1170.	Look carefully at the																		-
	following square.																		
1171.	We will find the area of the																		-
	square using 2 different																		
	methods.																		
1172.	Finding the area of the																		_
	square using method 1																		
1173.	Total area = area I + area II +																		-
	area III + area IV + area V																		
1174.	Finding the area using																		-
	method 2																		
1175.	The area of the square =																		-
	(a+b) ²																		
1176.	The equation to find the																		-
	area of the square using																		
	method 1 and method 2 can																		
	be used to prove																		
	Pythagorean theorem																		
1177.	The area of the square using																		_
	method = the area of the																		
	square using method 2.																		
1178.	Discovering the Pythagorean																		_
	theorem version 3.																		
1179.	Look carefully at the																		-
	following square.																		
1180.	We will prove Pythagorean																		-
	theorem using the square.																		
1181.	The area of the square is																		_
	equal to the sum of the																		
			 	 		11		1 1	 1		 	1		 - 1			 	1	

	areas of the shapes inside															
	the square.															
1182.	The following equation is to															_
	prove the Pythagorean															
	theorem.															
1183.	Exercise															+
1184.	Example															-
1185.	1. Solve the following															-
	problems:															
1186.	a. three different right															-
	triangles ABC as															
	follows: AB = 3 units															
1187.	BC = 4 units															_
1188.	AB = 5 units															_
1189.	BC = 12 units															_
1190.	AB = 9 units															_
1191.	BC = 12 units															_
1192.	b. Find the length of each															_
1193.	side of the above															
	triangles.															
1194.	Put the result in the															_
	following table.															
1195.	C. Click the button to															_
	check the answer															
1196.	look carefully at the table.															-
1197.	what you can conclude?															_
1198.	2. Calculate the length of the															_
	diagonal of the following															
	rectangle.															
1199.	3. Look at the sailboat on															_
	the picture carefully!															
1200.	If it is known that t = 4m, a =															
	3m, and b = 0,5m.															
1201.	a. How much is the			٧				1				٧			1	Wha t is the perimeter of saik on
	a. How mach is the															the picture?

	perimeter of sail on the													
	picture?													
1202.	b. How much is the area of sail?			٧							٧			What is the area of sail?
1203.	4. Look at the pyramid on the right side!													-
1204.	if it is known that the pyramid is a right angled triangle and the length of its foot is 100m, how much is the length of its below side?			٧							٧			If it is known that the pyramid is a right angled triangle and the length of its foot is 100m, what is the length of its below side?
1205.	5. Look at the picture of house carefully!													-
1206.	If it is known that it is a right field triangle, and t = 1,2m and a = 3,2m.													-
1207.	calculate:													-
1208.	a. How much is the length if its hypotenuse?			٧							٧			What is the length of its hypotenuse?
1209.	b. bis the area of triangle?			٧							٧			What is the area of triangle?
1210.	Quiz													
1211.	The followings are the length of the sides of triangles.													-
1212.	Which ones are the lengths of the sides of right triangle?													-
1213.	Your answer is wrong													-
1214.	The perimeter of the structure below is													-
1215.	The area of the following figure is													-
1216.	A triangle A, B, C is shown at the figure.													-
1217.	The followings are the formula of pythagoras,													-

	except	1		1 1			П	<u> </u>	1				1	1		
1218.	Your answer is true		1 1				+			٧		v				Your answer is correct.
1219.	Look carefully at the		+ +	1 1						-						-
1215.	following figures															
1220.	There is a car running to	+	1 1	1 1							+					_
1220.	reach a place that is 2															
	meters high.															
1221.	What is the distance that		1 1				t									_
	the car must take to reach															
	that place?															
1222.	number of items = 5															_
1223.	Correct answer = 1															-
1224.	Score = 20															-
1225.	Phytagorean theorem															-
1226.	Phytagorean formula															-
1227.	Phytagoras (564 – 475 BC)															_
	was a Greek philosopher															
	who developed math,															
	astronomy, and musical															
	theorem.															
1228.	Phytagorean theorem is the															-
	most outstanding work of															
	Phytagoras.															
1229.	The theorem stated that In a															-
	right triangle, the sum of the															
	square length of the right															
	sides is equal to the square															
	length of the hypotenus.															
1230.	The Phytagorean theorem															-
	can also be represented in															
	the formula form.															
1231.	Look carefully at the															-
	following figure.															
1232.	Δ ABC is a right triangle.			$\downarrow \downarrow \downarrow$			$\perp \perp$									-
1233.	the right sides are a and b.															_

1224	One side and saits the dialet	т т		1 1												T	
1234.	One side opposite the right																_
	angle, called hypothenuse is																
4225	C.																
1235.	The relation between																-
	$c^2 = a^2 + b^2$ that is called																
	Phytagoras formula								_		-						
1236.	Conclution: Formula to							٧		٧	'		V	'			Conclusion: Formula to calculate
	calculate the length of																the length of hypotenuse is
	hypothenuse its																
1237.	The above equation is called																-
	Phytagorean formula																
1238.	Exercise																_
1239.	Examples																-
1240.	1. Calculate the lengths of																_
	sides a, b, and c of the																
	sides a, b, and c or the																
	following right triangle																
1241.	the length of side a =cm																-
1242.	The length of side b =m																-
1243.	The length of side c =m																-
1244.	Problem solving:																-
1245.	2. Calculate a perimeter																_
	of the following kite																
1456.	The perimeter of the kite is																_
	cm																
1457.	3. Based on the map,																_
	Kalimantan Tengah																
	consists of 3 cities,																
	namely Kasongan,																
	Sampit, and Bukitrawi																
1458.	Tono will travel to those 3									\top							_
	cities by car																
1459.	It takes 1 liter of gasoline to																_
1433.	reach 12 km																
1460.	a. How much gasoline			\vdash			_	_	+	-	+						_
1400.	a. How much gasonite														ļ.		

	/I: \:				1 1								1 1	-	\neg
	(liter) is needed by														
	Tono to travel from														
	Sampit to Bukitrawi?														
1461.	liters gasoline													_	
1462.	b. How much gasoline													-	
	(liter) is needed by														
	Tono to travel from														
	Sampit to Bukitrawi via														
	Kasongan?														
1463.	liters gasoline													-	
1464.	4. How to measure the													_	
	width of the river on														
	the picture below?														
1465.	We can use the Pythagorean													-	
	theorem to solve the														
	problem														
1467.	5. If it is known that the													_	
	height of plane when it														
	takes off is 2.500 m and														
	the distance on the														
	ground from the take														
	off point is 6.000,														
	calculate the length of														
	its track when it takes														
	off														
1468.	The length of take-off track													_	
	ism														
1469.	Quiz													-	
1470.	1. Calculate the diagonal													_	
	length of the area A G														
	of the cuboid ABCD														
	EFGH as follows:														
1471.	2. Look carefully at the													_	
	following figure														
1472.	There are 2 right triangles as													-	

	T	 	 1 1	 	1		1 1	 	1	1 1	 1			1	1 1		 	
	shown at the figure.																	
1473.	Calculate the length of A to B?																	-
1474.	3. Look at the following figure of a plane!																	-
1475.	The plane takes off from A to B.																	-
1476.	Calculate the length of A to B?																	-
1477.	4. Mr. Sitorus has a rectangle garden that will be planted vegetables like the picture beside.	√											٧				tl	Vr. Sitorus has a rectangle garden hat will be planted with regetables like the picture beside.
1478.	how much fertelizer should he buy if one square meter needs 0.5 kilograms of fertilizer?																	_
1479.	5. Look at the picture of a windmill beside																	-
1480.	Its laths are in the form of isosceles triangles in which its base and perpendicular is 5 meters.																	_
1481.	How long is A-B?																	_
1482.	number of items = 5																	_
1483.	correct answer = 0																	_
1484.	score=0					1												_
1485.	Triples Phytagorean																	_
1486.	In the left side, there is a right triangle with side a and b.																	-
1487.	the hypothenuse is c																	-
1488.	According to Phytagorean Formula, $c^2 = a^2 + b^2$																	-

				1 1		1 1				_			-		_			_	 			
1489.	If we take n and m, where n																				-	
	> m, we can find side a by																					
	using the formula																					
	$a^2 = n^2 + m^2$ and the																					
	length of side $b = 2 \times n \times m$.																					
1490.	Side c can be found by equation $c^2 = n^2 + m^2$.																				-	
1491.	The result of that equations,																				_	
1131.	namely a, b, and c is called																					
	Triples Phytagorean.																					
1492.	If n = 4, m = 2 find a, b, and c					+										+ +					_	
1432.	as result of the equation of																					
	a triangle as shown in the																					
	left side?																					
1493.	The result of a, b, and c	+	+			\dagger	\dashv	+		1	+	-		+	-	+	_	-		+	_	
1433.	from the above equation																					
	are natural number.																					
1494.	Please calculate a,b, and c					+										+ +					_	
1434.	using phytagorean formula.																					
1495.	Are the results the same?																				_	
1496.	Conclusion																			+	_	
1497.	What conclusion can you	_				1 1				+		+						+			_	
1437.	make after learning this																					
	topic?																					
1498.	Is your conclusion the same																				_	
1.50.	as the following conclusion?																					
1499.	If a, b, and c are the length					1 1	-					+									_	
1.55.	of sides of the right triangle,																					
	in which a, b, and c are																					
	natural numbers, then a, b,																					
	and c are Triples																					
	Phytagorean																					
1500.	Exercise		+			1 +		+		1	t					+					_	
1501.	Examples		+			\dagger	_	+	-	1	+					+				+	_	
1501.			+			+		+		-	+	+				+					_	
1302.	1. A right triangle ABC has																					

	longth right sides a and			1	1			1	1	1 1			1	1			_			1	1	
	length right sides a and b.																					
1503.	The hypothenuse is c																					-
1503.	a, b, and c are natural																					-
	numbers.																					
1504.	complete the table below!																					_
1505.	Using the equations																					-
	discussed previously to find																					
	the model of Triples																					
	Phytagorean.											_										
1506.	2. The lengths of the sides																					-
	of a right triangle are 6																					
	cm, 11 cm, and 14cm																					
	respectively		_		-	-						+										
1507.	Find the hypothenuse and										1	٧								٧		Find the hypotenuse and its
	its square																					square.
1508.	Find the sum of the squared																					-
	sides?																					
1509.	Compare the result of point																					-
	a and b																					
1510.	What kind of triangles ABC?	٧															١	/				What kind of triangle is ABC?
1511.	Are the lengths of sides 6																					-
	cm, 11 cm, and 14cm triples																					
	phytagorean numbers?											_										
1512.	Explain in more details!											_										-
1513.	3. Lengths of each lateral																					-
	of a triangle are known																					
	below.																					
1514.	What kind of triangle are																					-
	they?		_				_		_			\perp					_					
1515.	In which model of triangle	٧															١	/				In which model of triangle do they
	they belong to?											_										belong to?
1516.	Are they acute triangle,																					-

	_ hatter a Austrian relation of the Austrian Relation	_							1	1	1	1 1	 		1	1 1	<u> </u>	1	
	obtuse triangle, or right																		
4547	angled triangle?																		
1517.	Fill in the blanks: A for acute																		_
1518.	triangle O for obtuse triangle					-		-					-						
										-									
1519.	R for right-angled triangle?				-														_
1520.	Quiz			_			-									-			_
1521.	Which of the following																		-
	numbers are triple																		
	Phytagorean?																		
1522.	Your answer is correct																		_
1523.	If the lengths of sides of a																		-
	triangle 6cm, 8cm, and																		
	10cmrespectively, what kind																		
	of triangle is it																		
1524.	A right triangle																		-
1525.	An acute triangle																		-
1526.	An obtuse triangle																		-
1527.	An equilateral triangle																		_
1528.	There is an ABC triangle in																		-
	which AB = 5cm, BC = 6cm,																		
	and AC = 4 cm.																		
1529.	So, ABC is called																		-
1530.	An angled triangle																		-
1531.	An acute angled triangle																		-
1532.	Amblygon triangle																		-
1533.	equilateral triangle																		-
1534.	Amblygon triangle																		-
1535.	An ABC triangle with AB = 5																		_
	cm, BC = 6 cm, and AC = 10																		
	cm is included as																		
1536.	An angled triangle																		_
1537.	An acute angled triangle																		_
1538.	equilateral triangle																		_
1539.	A triangle that has the same																		_

	base and perpendicular is																
	called																
1540.	Number of items = 5																-
1541.	Correct answer = 1																-
1542.	Score = 20																-
1543.	Evaluation																-
1544.	Are you ready for Evaluation?																-
1545.	Type your name then press the enter button																-
1546.	Which one are laterals of a right angled triangle																-
1547.	Your answer is correct																_
1548.	The area of trapezoid is																-
1549.	if the length of right-side laterals of right-angled triangle KLM are 4cm and 6cm, the length of its hypothenuse is																-
1550.	Here are laterals of some triangles																-
1551.	Which one ore laterals of an acute triangle	٧											٧				Which ones are laterals of an acute triangle
1552.	The space diagonal DF of cuboind ABCD EFGH is									٧					٧		The space diagonal DF of cuboids ABCD EFGH is
1553.	Laterals of a triangle are known here.																_
1554.	Find out whether it is an acute, a right-angled, or an obtuse triangle																-
1555.	Determine the lengths of e																-
1556.	Mr. Budi has a field like shown on the picture.				٧								٧				Mr. Budi has a field as shown in the picture.
1557.	Corn will be planted on that																-

	T				1 1	- 1	- 1	1 1	 	 1 1	 			- 1	1	1 1		
	field.																	
1558.	Every meter square needs 5																	-
	grams of corn seed.																	
1559.	1 kg seed is Rp 7.000,00																	-
1560.	How much money should																	-
	Mr. Budi pay to buy the																	
	seed for his field?																	
1561.	Look at the picture carefully.																	_
1562.	calculate the length of the																	_
	sloping road.																	
1563.	Roof a room is covered by																	_
	square ceilings, and the																	
	length of its lateral is 1																	
	meter.																	
1564.	Calculate the distance of									\vdash			+ 1			H		_
1304.	lamp A and lamp B by using																	
	the Phytagorean Theorem in																	
	the closest centimeter.																	
1565.	Ardi wants to make a kite.	+++								+		-	+ 1			H		_
1566.	Help him to make a perfect				+													
1500.	-																	-
	kite by calculating the																	
4565	length of x and y	++				_				1		-			-	-	_	
1567.	Look at the picture																	-
	carefully!						_											
1568.	Two planes are over a																	-
	house.																	
1569.	The radar station is 8 km																	-
	away from the house.																	
1570.	The station accepts signals																	-
	from both planes in the																	
	distanceof 9 km and 10 km.				\perp													
1571.	Calculate the height																\sqcap	 -
	difference of both planes																	
	(summarize in closest																	
	meter)																	
1572.	,																\dashv	_
1572.	meter) Total question = 12																	_

_	<u> </u>		 		 	 	, -	 	 	-		 	 			 		 -	
1573.	Correct answer = 7																		-
1574.	Your score is 58,3																		_
1575.	Click for additional Question																		-
	(essay)																		
1576.	Determine the length of: (i)																		-
	xy (ii) y ₂																		
1577.	Calculate the length of x ₂ ,																		-
	summarize in two decimal.																		
1578.	Look at the tent carefully!																		-
1579.	The front side of a tent is a																		-
	triangle. Calculate the																		1
	length of BC, AB																		
1580.	Tania's father is											٧					٧		Tania's father is constructing the
	constrcuting the																		storehouse's foundation.
	storehouse's foundation																		
1581.	Its outside laterals should be																		_
	3,5 m and 2,5 m.																		1
1562.	How to determine that the	٧													٧				How to determine that the
	foundation in a rectangle																		foundation is in a rectangle palm.
	palm																		,
1583.	Before construct the door,	٧													٧				Before constructing the door, Jupri
	Jupri checks whether the																		checks whether the door is in
	door is in rectangle form.																		rectangle form.
1584.	Is the angle SPQ right-																		_
	angled?																		
1585.	Which side would he check																		_
	to know that the edge of the																		
	door is rectangle?																		
1586.	how much should the	٧			٧									٧					What should the length be?
	lengths?																		_
1587.	It is shown that A (1, 1), B																		-
	(11, 1), and C (9, 5) make a																		
	right-angled triangle																		
1588.	Draw the points																		-
1589.	Calculate the length of AC																		_

	BC BC	
1590.	Is the expression true? (That triangle is right-angled)	
1591.	start from A, take a walk 120 m to the east side to B.	
1592.	And then to the north side 90 m until the tower foot, which is C.	
1593.	There is a gold (N) 100m above you.	
1594.	Write down all the scales in the picture	
1595.	calculate: distance from A to N, summarize in one decimal	

Table 6. Circle

No	Item									Т	ype	S O	f Eri	rors	;										(Caus	ses (of E	rror	S		Alternative Corrections
					(Ove	rt er	rors								(Cov	ert	erro	·s				I	I	С	Co	mm	unic	catio	on	
		on	nissic	n	addi			Select			derin			issio		Add			Selec			order		n	n	О	St	rate				
		М	L	S	M	L :	S 1	M L	S	М	L	S	M	L	S	M	L	S	М	_ 9	1 2	M L	_ S	t	t	n	Α	Р	С	Α	L	
																								е	r	t	٧	r	0	р	а	
																								r	а							
1596.	Circle and The Elements																	٧											٧			Circle and its elements
1597.	Circumference and Area of																															
	Circle																															-
1598.	Central Angle, Arc and																															-
	Sector																															
1599.	Incircle and Circumcircle																															-
1600.	Tangent Of Circle																															-
1601.	Evaluation																															-
1602.	What is Circle?		٧																						٧							What is a circle?
1603.	Circle and the elements of																															-
	circle																															
1604.	Sub topics :																															-
1605.	1. Definition of circle																															-
1606.	2. The elements of circle																															-
1607.	Select the sub menu to learn																															-
	more																															
1608.	Look at a picture below																															-
1609.	Many objects surrounding																															-
	us are in the form of a circle.																															
1610.	A circle is a set of points in																															-
	a plane that are the same																															
	distance from a fixed point																															
1611.	Radius																															-
1612.	A radius is the length of a																٧												٧			A radius is the length of a straight
	straight line drown from the																															line drawn from the centre of a
	centre of a circle to a point																															circle to a point on its
	on its circumference																															circumference.

		 	 	 	 	 			 	 	,	 	 	 		
1613.	A notation of radius of a														-	-
	circle is r															
1614.	Observe the following														-	-
	picture, and press the															
	simulation button															
1615.	Line OA and OB or the														-	-
	radius of a circle is															
	represented by r															
1616.	The length of OA = the														-	-
	length of OB															
1617.	Diameter														-	-
1618.	A diameter is a chord that														-	-
	passes through the center of															
	the circle															
1619.	A notation of a diameter is														-	-
	d.															
1620.	Look at the figure on the															-
	right, and press the															
	simulation button															
1621.	AB is the diameter of the														-	-
	circle O															
1622.	Notice that AB = AO + OB														-	-
	and AO = OB = r															
1623.	AB = 2r															-
1624.	Arc														-	-
1625.	An arc is a curving line that														-	-
	is part of circle															
1626.	The notation of arc is														-	-
1627.	Look at the figure on right														-	-
	and the simulation button															
1628.	Arc ABC (or ABC) is an arc														-	-
	of circle L															
1629.	Arc ABC is bounded by point														-	-
	A and C at circle L															

4600				г г	1 1		1	П		1 1		1	1		1	1 1	1	- 1	
1630.	Chord																		-
1631.	A chord is a line that joins two points on the circumference of a circle																		-
1632.	PQ is a chord																		-
1633.	Find the other chords the simulation button																		-
1634.	Segment of the circle																		-
1635.	A segment is a part of a circle that is between a chord and the circumference.																		-
1636.	Look at the figure on the right, and press the simulation button																		-
1637.	The segment DEF is bounded by the chord DF and the chord DEF																		-
1638.	The figure DEF is the segment in circle L																		-
1639.	Sector of Circle																		-
1640.	The region inside a circle which is bounded by two radiuses and an arc of the circle.			٧										V	1				The region inside a circle is bounded by two radiuses and an arc of the circle.
1641.	Look at the figure on the right, and press the simulation button																		-
1642.	Sector bounded by radius ML and NL, and arc MN is sector MNL																		-
1643.	Apotem	٧												ν	'				Apothem
1644.	Apotem is the shortest distance between a chord							٧						ν	'				Apothem is the shortest distance between a chord and the centre of

	and the centre of a circle.													a circle.
1645.	Look at the figure on the right, and press the simulation button													-
1646.	LR is the apotem of chord PQ.						٧					٧		LR is the apothem of chord PQ.
1647.	The characteristics of an apotem of a chord													The characteristics of an apothem of a chord.
1648.	An apotem is perpendicular to a chord LR is perpendicular to PQ													An apothem is perpendicular to a chord LR is perpendicular to PQ.
1649.	An apotem divides a chard in to two lines in the same length													An apothem divides a chard in to two lines in the same length.
1650.	The length of PR = the length of RQ.													-
1651.	Quiz of Circle													1
1652.	Are you ready for taking quiz?													-
1653.	Type your name, then press Enter													-
1654.	Look at the figure on the right!													-
1655.	PA = PB = PC = PG is													-
1656.	Your answer is wrong													-
1657.	The chord of a circle on the right are	٧										٧		The chords of a circle on the right are
1658.	Your answer is right													-
1659.	The shaded area AOC on the right figure is called													-
1660.	Of the following statements, which the right one is			٧								٧		Of the following statements, the right one is
1661.	The length of a diameter is $\frac{1}{2}$ radius													-

		т т		1						1 1				1			1	1	T
1662.	A triangle that is formed by																		-
	pairs of a radius and a chord																		
	is always equilateral																		
1663.	A sector is sector of circle																		-
	bounded by pairs of radius																		
1664.	Sector is a part of segment																		-
	of the circle																		
1665.	A segment passing through																		-
	center of circle that is																		
	connecting two points at																		
	circle is																		
1666.	Total of Questions = 5																		-
1667.	Right answers = 1																		-
1668.	Your score is = 20																		-
1669.	Circumference and area of																		-
	circle																		
1670.	Circumference																		-
1671.																			
1672.	Circumference is distance																		-
	around closed curve																		
1673.	Look at the figure on the																		-
	right and press the																		
	simulation button																		
1674.	A number of 7 units in the			٧										٧					A number of 7 units in the
	diameter of a circle is a cut																		diameter of a circle is cut at point
	at point A.																		A.
1675.	The curve circle		٧											٧					The curve circle is straightened, so
	straightened, so we can get																		we can get a straight line AA'.
<u></u>	a straight line AA'		[1						
1676.	The length of AA' is																		-
	measured, and we get 22																		
<u></u>	units.		[1						
1677.	Finding value of π (read :																		-
	phi)																		
1678.	Find objects in your																		-
	surrounding that are in the																		

	,	 			 				 	 						 	1
	form of circles																
1679.	Measure their diameters																-
	and circumferences																
1680.	Record the result of your																-
	measurements in the																
	provided spaces																
1681.	Then press the picture																-
	below																
1682.	Diameter =																-
1683.	circumference =																-
1684.	the value of π =																-
1685.	If you measured accurately,		VV										٧				If you measure accurately, you will
	then you will find that the																find that the value of ' is close to
	value of ' is close to 3,14 or																$3,14 \text{ or } \frac{22}{7}$.
	22 7																7
1686.	The formula of	+ +		+	+	-		-						-		 +	
1000.	circumference																-
1607		+ +		+	+	-		-						-		 +	
1687.	Based on figure 1, the formulation of																-
4600	circumference is as follows			+ +										-			
1688.	$K = \pi d$			+ +	+ +	-				-				-			-
1689.	K= circumference			+	+ +									_			-
1690.	r = radius of circle			1 1										-		_	-
1691.	d = diameter													-			-
1692.	$\pi = 3,14 \text{ atau } \frac{22}{7}$																-
1693.	Determine the																-
	circumference of a circle if																
	the radius of a circle is :																
1694.	The circumference with r =																-
	14 cm is																
1695.	Thus, the circumference is																-
	88 cm																
1696.	The circumference with r =																-
	30 cm is																

			 		1		- 1	- 1	1	1 1				1	1	1 1		1			
1697.	thus, the circumference is																				-
	188,4 cm																				
1698.	Area of circle																				-
1699.	Area of a circle is an area																				-
	inside circle																				
1700.	Study the figure on the																				-
	right, and press the																				
	simulation button																				
1701.	The shaded region on											٧					٧				The shaded region in orange on the
	orange on the figure is the																				figure is the area of the circle.
	area of the circle																				
1702.	To determine the area of a																				-
	circle, we can do it by:																				
1703.	Calculating the area of a			٧		٧											٧				Calculating the area of a circle by
	circle with counting the																				counting the unit of squares.
	square of units.																				
1704.	Calculating the area of a																				-
	circle using the formula																				
1705.	Area of circle																				-
1706.	Study the example of																				-
	determining the area of a																				
	circle by counting the																				
	square of units as shown in																				
	the figure on the right																				
1707.	We can find 49 full squares																				-
1708.	12 squares, whose areas are											١	/				٧				12 areas, with areas of half of
	half of square or more																				square or more.
1709.	Thus, the area of the circle is																				-
	close to 62 cm ²																				
1710.	Calculating the area of a																				-
	circle using the formula		 						\perp												
1711.	Press the simulation button,																				-
	and study the picture on the																				
	right																				
1712.	The length of AB = the																				-

			_							 					
	length of arc AB = $\frac{1}{2}$ x														
	circumference														
1713.	Width BC = radius of circle =														-
	r														
1714.	Thus, the area of a rectangle														-
	is = the area of a circle														
1715.	The area of a rectangle = AB x BC														-
1716.	Thus, the area of a circle is π .r ²														-
1717.	Determine the area of a circle with the following radius:														-
1718.	The area of a circle with r = 7 cm is														-
1719.	Thus, the area of a circle is 154 cm ²														-
1720.	The area of a circle with r = 10 cm is														-
1721.	Thus, the area of a circle is 134 cm ²														-
1722.	Are you ready for Quiz?														-
1723.	type your name, then press enter button														-
1724.	A diameter of a circle is 14 cm . its circumference is														-
1725.	Your answer is right														-
1726.	Some roses planted in a garden are in the form of a circle														-
1727.	A diameter of garden is 63 cm								٧			٧			The diameter of the garden is 63 cm.
1728.	The distance between two closer roses is 3m														The distance between two closest roses is 3 m.
1729.	If $\pi = \frac{22}{7}$, then the total	٧	٧								٧				If $\pi = \frac{22}{7}$, the total number of roses

		 		1	1		- 1	1	1	1		-		1 1	1		- 1			T
	number roses in the garden																			in the garden are
	are								_				_							
1730.	Study the following picture																			-
	that has an element of a																			
	circle.											_								
1731.	The area of the shaded																			-
	region in orange is																			
1732.	Mr Paijo has a garden as																			-
	shown in the picture																			
1733.	If the diameter is 28 meter																			-
	The area of the garden is																			
1734.	A diameter of a circle is 10																			-
	cm																			
1735.	If the diameter is changed										٧					٧				If the diameter is changed into a
	into a half of it, then , the																			half of it, the area of the circle is
	area of the circle is																			
1736.	Total Questions = 5																			-
1736.	Right Answers = 1																			-
1737.	Your Score is 20																			-
1738.	Understanding central																			-
	angles and circumference																			
	angles																			
1739.	Central angle, arc, and																			-
	sector of circle																			
1740.	subtopics : central angle and																			-
	circumference angle																			
1741.	The relationship of central																			-
	angle, arc, and sector of																			
	circle																			
1742.	select the sub menu to learn																			-
	more																			
1743.	Central angels and																			-
	circumference angels																			
1744.	Study the picture of a wheel					1														-
	on the right																			

1745.	What can you say about the												-
	spokes of the wheel?												
1746.	Press the simulation button												-
1747.	If you notice the spokes												-
	carefully, they meet at one												
	central point and form an												
	angel												
1748.	What kind of angle is it?												-
1749.	What is the size of the angle												-
	?												
1750.	Understanding central												-
	angles and -circumference												
	angels												
1751.	Press the simulation button												-
	and look at the picture of a												
	circle on the right												
1752.	Point O is central point of												-
	the circle												
1753.	Angle BOA is the central												-
	angel because its angle												
	point is in the centre of a												
	circle												
1754.	Compare with angel BKA									٧		٧	Compare with angle BKA.
1755.	The angle point BKA is in the												-
	arc of the circle												
1756.	Then, angle BKA is a												-
	circumference angle												
1757.	A central angle is an angle												-
	formed by two radii facing												
	an arc of a circle												
1758.	A circumference angle is an												-
	angle formed by two chords												
	that are intersecting at a												

	1	 1 1		- 1	1 1		ı ı	1	1		1 1		<u> </u>	1 1	- 1	1		 1	
	circle circumference									_							\perp		
1759.	Press the simulation button																		-
	and study to the picture on																		
	the right.																		
1760.	Angle BOC is a central angle																		-
1761.	Angel BAC is a																		-
	circumference angle																		
1762.	The characteristics of																		-
	central angles and																		
	circumference angles																		
1763.	The measure of a																		-
	circumference angle is a half																		
	of central angle, if both																		
	angels face the same arc																		
1764.	Study the picture on the																		-
1765.	right and press the																		
	simulation button																		
1766.	2 Angle BAC = angle BEC																		-
1767.	or angle BAC = $\frac{1}{2}$ angle BEC																		-
1768.	The circumference angels																		-
	that face arc have the same																		
	measure of angle																		
1769.	Press the simulation button																		-
	and study the picture on the																		
	right																		
1770.	angle ABC and ADC face the																		-
	same arc AC																		
1771.	Evidence																		-
1772.	Angle ABC = half of angle																		-
	ALC																		
1773.	Angle ADC = half of angle											Ţ							-
	ALC																		
1774.	It means that angle ABC =											Ī							-
	angle ADC																		

	T		1	1 1	1 1		-	 1 1	1	т т	 		-1	1 1	- 1	1 1		 1	
1775.	Study the picture on the	i I																	-
	right and press the	i I																	
	simulation button																		
1776.	Angle PLQ = angle RLS, then	1																	-
		ı 📗																	
1777.	The length of arc PQ =	1																	-
	length of arc RS	1																	
1778.	Evidence :																		-
1779.	The length of arc PQ = 5	1																	-
	units	1																	
1780.	The length of arc RS = 5	1																	-
	units																		
1781.	It means that the length of																		-
	arc PQ = the length of arc RS	1																	
1782.	The measure of a																		-
	circumference angle that	1																	
	faces a half circle (a	1																	
	diameter of a circle) is 90°																		
	(right angle)																		
1783.	Study the picture on the	1																	-
	right, and press the	1																	
	simulation button	1																	
1784.	AB is the diameter of circle																		-
	L, then angle ALB = 180°																		
1785.	The total measure of a																		-
	perioon																		
1786.	If the measure of a straight																		-
	line is 180°, what is the																		
	measure of a perioon (one	1																	
	revolution)																		
1787.	Study the picture on the																T		-
	right, and press the																		
	simulation button																		
1788.	The measure of angle AOB																T		-
	is 180°, because it is a																		
	straight line.																		
	U		1 1			_1		1			 	 		<u> </u>		1		1	

	T	 	 											
1789.	The measure of angle BOA is 180° too													-
1790.	Thus, the measure of a perioon (one revolution) is $180^{\circ} + 180^{\circ} = 360^{\circ}$													-
1791.	The relationship among a central angle, a sector area, and length of arc.													-
1792.	To determine the relationship, press the simulation button, and study the picture on the right.													-
1793.	The length of arc US = 3 the times length of arc RT, so that we find ratio:					٧					٧			The length of arc US = 3 times the length of arc RT, so that we find ratio:
1794.	The area of sector PUS = 3 the times of sector PRT, so that we find ratio:					٧					٧			The area of sector PUS = 3 times of sector PRT, so that we find ratio :
1795.	Size of central angle SPU = 3 times the measure of angle RPT, so that we find ratio:													-
1796.	The ratio of sector area = the ratio of central angle = the ratio of the length of arc.													-
1797.	The relationship among a central angle, a sector area, a length of arc, and an area of segment of the circle													-
1798.	For two sectors of more of a circle whose measures are the same as the picture on the right, then													-
1799.	Are you ready for taking				1			1 1						-

	quiz?					1						1									
	4																				
1800.	Type your name than press enter button						٧											٧			Type your name then press enter button.
1801.	b the circumference of a circle is 314 cm, the measure of POQ = 72 and ' = 3,14	٧															٧				The circumference of a circle is 314 cm, the measure of POQ = 72 and ' = 3,14 is
1802.	The area of sector OPQ is (2003)																				-
1803.	Your answer is wrong																				-
1804.	Look at the oicture on the right													٧						٧	Look at the picture on the right.
1805.	The measure of ADE = 70, the measure of BD = 56, size of ACE is																				-
1806.	Your answer is right.																				-
1807.	The area of a segment of the circle is																				-
1808.	On the chords PQRS of the rectangle on the rectangle on the rectangle on the right figure, given P = 83 and Q = 27			٧	`\	1											٧				On the chords PQRS of the rectangle on the right figure, P = 83 and Q = 27.
1809.	The measure of angle S is																				-
1810.	The a area of a segment rea of segment of the circle which is given blue color in the picture above is			٧	` \	1														٧	The area of a segment of the circle which is given blue color in the picture above is
1811.	Result																				-
1812.	Total Question = 5		1															1			-
1813.	Right Answer = 1																				-
1814.	Your Score is 20										T		1						1		
1815.	Incircle and Circumcircle																				-
1816.	Drawing inside and outside																				-

	circle of triangle										T		
1817.	Select the sub menu to learn more												-
1818.	Subtopics: understanding of inside and outside circle of triangle												-
1819.	In circle												-
1820.	study the picture of a triangle on the left, and press the simulation button												-
1821.	In the picture, the circle with central O is an inscribe circle of triangle PRQ.												-
1822.	The central point of the circle is the intersection of three points of angle triangle PRQ												-
1823.	An inscribe circle of triangle is a circle that touches the three points of a triangle												-
1824.	Drawing a triangle inside a circle												-
1825.	How to draw a triangle inside a circle?												-
1826.	Do the following steps												-
1827.	Draw triangle SRP by pressing point P												-
1828.	Draw bisector angle RSP by pressing point S												-
1829.	Draw bisector angle PRS by pressing point R												-
1830.	Draw bisector angle RPS by pressing point P												-
1831.	Draw a perpendicular line of												-

	side DD with resint O rease						1 1			1	— г		1		-	1 1	1		1				
	side RP with point O, press point O																						
1832.	Draw a circle with centre O,														-						_		
1032.	press point O																				-		
	press point o																						
1833.	Study the picture of the																				_		
2000.	triangle on the left, and																						
	press the simulation button																						
1834.	In the picture on the left, a																				-		
	circle with centre at P is an																						
	outer circle of triangle ABC																						
1835.	The central point is the																				-	,	
	intersection of three axle																						
	lines of the triangle slides																						
1836.	The outer circle of a triangle																				-		
	is a circle passing through																						
	three vertexes of the																						
	triangle																						
1837.	Drawing a circumcircle																				-		
1838.	How to draw a circumcircle?																				-		
1839.	Draw triangle ABC by																				-		
	pressing point A																						
1840.	Draw an axis AB by pressing																				-		
	point B																						
1841.	Draw an axis AC by pressing																				-		
	point A																						
1842.	Draw an axis BC by pressing																				-		
	point C																						
1843.	Draw a radius by pressing																				-		
	point P				\vdash		+				\vdash				_								
1844.	Draw a circle by pressing																				-		
4045	point P			-		_	+					_				+							
1845.	Tangent of circle	-		-		\perp	+	_			\vdash	_		-		+			_		-		
1846.	Sub topics : definition of																				-		
	circle tangent						1																

1047	Tangant of two sizels						П								1 1						1 1						
1847.	Tangent of two circle	+	-	$\vdash \vdash$	+	+		_	+	-	$\vdash \vdash$	-	+	-	\vdash	+	+	+	+	+	+	_	+	+	+	-	-
1848.	The characteristics of circle tangent																										-
1849.	Select the sub menu to learn																										-
	more																										
1850.	A tangent of a circle																										-
1851.	Understanding a tangent of																										-
	a circle																										
1852.	In the daily life, we often			٧																	٧						In the daily life, we often see many
	see many objects in the																										objects in the form of circles that
	form of circles that touch																										touch other objects.
	with other objects																										-
1853.	For instance, a pulley to																										-
	take water from a well,																										
	wheels of train, chain of																										
	bicycle, and soon																										
1854.	The objects can be																										-
	illustrated as a circle and its																										
	trace in the form of line																										
1855.	The line is called a tangent																										-
	of a circle, and its point is																										
	called the point of a circle																										
	tangency																										
1856.	Study the picture on the left																										-
1857.	Line AB and line DC are																										-
	diameters of circles, and line																										
	g coincides with line DC																										
																									\perp		
1858.	If line g is moved to the right																										-
1	or to the left in the position																										
1	that is always parallel with																										
	DC, then position of line g																										
	will intersect the circle just																										
	at one point																										

1859.	It is on the right the position of point A, or on the left			٧								,	V			It is on the right position of point A, or on the left position of point B.
	position of point B															A, or on the left position of point b.
1860.	Therefore, line g is called as															-
	a tangent, and point A and point B are points of tangencies															
1861.	A tangent of a circle is a line that intersects circle just at one point, and is perpendicular with its radius															-
1862.	Properties of tangent of circle															-
1863.	Every tangent of circle is always perpendicular with its radius and diameter that pass through point of tangency.	٧										,	V			Every tangent of circle is always perpendicular with its radius and diameter that passes through point of tangency.
1864.	Look at circle O with line i.															-
1865.	It is tangent of circle at point A															-
1866.	Through one point at a circle, we can only make one tangent of a circle at the circle															-
1867.	Through one point at the outside of a circle, we can make two tangents of circle															-
1868.	Given circle O, and point P that is located is outside the line			٧								,	V			Circle O, and point P are located outside the line.
1869.	Through point P, we can make tangent PS with point S at the circle and tangent PQ with point Q at the															-

	Ι.,	1	1	1	1 1				1	1 1			1	1 1	 	1	1				1				
	circle.							-				-								_		-		_	
1870.	Look at the picture of two																								-
	circles with a centre P and O																								
1871.	The length PA = r1, and BO =		٧																	'	٧				The length of PA = $r1$, and BO = $r2$.
	r2																								
1872.	AB is the tangent of inner																								-
	common																								
1873.	Line of AB is parallel with																								-
	line SO																								
1874.	The length of AB = SO, then																								-
1875.	If: the length of AB = a, the																								-
	length of PO = b, then a^2 =																								
	$b^2 - (r1 + r2)^2$																								
1876.	Look at the picture of two																								-
	circles with P and O as the																								
	center on the left P and O,																								
1877.	The length of PA = r1 and																								-
	BO = r2																								
1878.	AB is outer common tangent																								-
	of OB = NO																								
1879.	Length AB = NO, then		٧																		V				Length of AB = NO, then
1880.	If: the length of AB = a, the																								-
	length of PO = b, then																								
1881.	Example 1																								-
1882.	Two circles with the centre																								-
	at P and O, each of their																								
	radii are 4 cm and 2 cm																								
1883.	If the distance of P to O is 10								1	1 1									1						-
	cm, determine the length of																								
	the tangent of inner																								
	common.																								
1884.	Answer : Cm																		7						-
1885.	Given :						=												7						-
1886.	Radius with the centre at P =				T	$\neg \dagger$	\dashv	\top	1			\top							7	1					_
				 	1	1				1	- 1		1	1 1			1	ı I		- 1	- 1	1	1		1

		1		 					1	1 1	-		 -1		 1	1 1	 		 -1		 -	T
	4 cm, then r1 = 4 cm							_				_										
1887.	Radius with centre at O = 2																					-
	cm, then r2 = 2 cm																					
								-														
1888.	The distance of two circle																					-
	centers = 10 cm, then PO																					
								_				_										
1889.	The length of tangent of																					-
	inner common AB = y cm																					
1890.	Line AB parallel with line SO,		٧															٧				Line AB is parallel with line SO,
	then																					then
1891.	The length AB = SO, then																					-
1892.	Thus, length of tangent																					-
	inner common = 8 cm																					
1893.	Example 2																					-
1894.	Two circles with a centre at																					-
	P and O																					
1895.	Each of their radii are 9 cm																					-
	and 3 cm																					
1896.	If the distance of P to O is 12																					-
	cm , determine the length of																					
	the tangent of outer																					
	common																					
1897.	Given :																					-
1898.	Radius with the centre at P =																					-
	9 cm, then r1 = 9 cm																					
1899.	Radius wuth the centre at O													٧						٧		Radius with the centre at O = 3 cm,
	= 3 cm, then r2 = 3 cm																					then r2 = 3 cm.
1900.	The distance of two circle										T						T	T				-
	centers = 12 cm , then PO																					
1901.	The length of the tangent										T						T	T				-
	outer common AB = y cm																					
1902.	Line AB parallel with line NO		٧			٧												٧			٧	Line AB is parallel with line NO, so
	maka																					that
1903.	The length AB = NO, then		٧														Ī	٧				The length of AB = NO, then

_	1			1	 				 	 				 	
1904.	Thus, length of tangent														-
	outer common = 10,4 cm														
1905.	The length of the tangent of														-
	a circle														
1906.	Calculate the length of the														-
	tanget of a circle :														
1907.	To calculate the length of a														-
	tangent of a circle at point														
	B, $AB^2 = PA^2 - PB^2$ (rule of														
	Pythagorean)														
1908.	Look at the picture on the														-
	right.														
1909.	AB is a tangent														-
1910.	The length of radius = 6cm,														-
	and length of PB = 10 cm														
1911.	Determine the length of														-
	tangent AB														
1912.	Answer = Cm														-
1913.	Suppose, the length of AB =														-
	y cm														
1914.	Triangle BAP is a right angle														-
	at A, then :														
1915.	Thus, the length of tangent														-
	is 8 cm														
1916.	Are you ready for quiz ?														-
1917.	Type your name, then press														-
	enter														
1918.	Given two circles with the		٧									٧			Two circles with the center at A
	center at A and B														and B.
1919.	Each of their radii are 34 cm														-
	and 10 cm														
1920.	Line CD is the tangent of							ĺ							-
	outer common														
1921.	If line CD = 32 cm, the														-
	length of AB is														

1922.	Vous answer is wrong	1 1					1				1 1			1					<u> </u>		T	T		
1922.	Your answer is wrong.																							-
1923.	Two circles with each radius																							-
	of 7 cm and 1 cm																							
1924.	If the distance of circle																							-
	centers is 10 cm, then the																							
	length of the tangent outer																							
	common of both circles is																							
1925.	Study to the picture bellow.			٧														٧						Eliminate the word to , so that:
																								Study the picture below.
1926.	If the length of AB = 3 cm,																							-
	then the length of common																							
	tangent CD is														_									
1927.	The length of the tangent																							-
	outer common CD is 16 cm																							
1928.	If the length of AB = 20 cm,																							-
	and BC = 4 cm, then the																							
	length of AD is																							
1929.	Given two circles with the			٧													٧							Two circles with the radii of 11 cm
	radii of 11 cm and 3 cm with																							and 3 cm with the center at M.
1000	the center at M							_							-									
1930.	If the distance between M																							-
	and N = 17 cm, then the																							
	length of the tangent outer																							
1021	common of AB is								-						-									
1931.	Result				-				-					-	-									-
1932.	total Question = 5			-																				-
1933.	right answer = 0																							-
1934.	our score is = 0			$\downarrow \downarrow$				_		-			٧	_		_	\sqcup			-	٧	<u> </u>		Your score is
1935.	Start now		_	$\downarrow \downarrow$	\perp	1				-						1		\downarrow				1		-
1936.	Are you ready for																							-
	evaluation?		_	$\downarrow \downarrow$																				
1937.	Type your name than press				٧												٧							Type your name then press enter.
	enter				1		1				1					1						1	1	

m, then the circumference is 1939. Your answer is wrong 1940. The area of a circle, with the diameter of 20 cm is 1941. The area of a circle = 616 cm², then its circumference is 1942. The area of a segment of the circle as seen on the picture is 1943. Study the picture on the right. 1944. If the length of its side is 14 cm, then the circumference of the shaded space as seen on the picture is 1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1948. The radius of circle outer right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1949. The picture below shows two circle with the centers of P and Q. 1940. The radius of P = 12 cm, QS	1022	If a diameter of the land	1 1	1 1			1 1	1 1		1 1		1 1	- 1				1 1	 _		1
is	1938.	If a diameter of a circle is 3,5																		-
1939. Your answer is wrong 1940. The area of a circle, with the diameter of 20 cm is 1941. The area of a circle = 616 cm², then its circumference is 1942. The area of a circle = 616 cm², then its circumference is 1943. The area of a circle = 616 cm², then its circumference is 1944. If the length of its side is 14 cm, then the circumference of the shaded space as seen on the picture is 1945. The area of a segment of the circle as seen on the picture is 1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1948. The radius of a circle insider right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the idlength are 8 cm, and 15 cm is 1949. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1940. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1941. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1942. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1943. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1944. The radius of outer outer right triangle whose the side lengths are 8 cm, and 15 cm is 1945. The radius of outer outer right triangle whose the side lengths are 8 cm, and 15 cm is 1946. The radius of outer right triangle whose the side lengths are 8 cm, and 15 cm is																				
1940. The area of a circle, with the diameter of 20 cm is 1941. The area of a circle = 616 cm², then its circumference is 1942. The area of a segment of the circle as seen on the picture is 1943. Study the picture on the right. 1944. If the length of its side is 14 cm, calculate the area of the shaded space as seen on the picture is 1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1948. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the ilengths are 8 cm, and 15 cm is 1949. The radius of P and Q. 1949. The radius of P = 12 cm, QS	1020		+	+	-		++	+		+	_	+		-	\vdash				-	
diameter of 20 cm is 1941. The area of a segment of the circle as seen on the picture is 1942. If the length of its side is 14 cm, shaded space as seen on the picture is 1944. Vour Answer is right. 1945. The length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1946. Vour Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1948. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, 4 cm, and 15 cm is 1949. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS	_																	_		-
1941. The area of circle = 616 cm ² , then its circumference is 1942. The area of a segment of the circle as seen on the picture is 1943. Study the picture on the right. 1944. If the length of its side is 14 cm., calculate the area of the shaded space 1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1947. The area of circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of P = 12 cm, QS	1940.																			-
The area of a segment of the circle as seen on the picture is																				
1942. The area of a segment of the circle as seen on the picture is 1943. Study the picture on the right. 1944. If the length of its side is 14 cm, calculate the area of the shaded space 1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1948. The radius of a circle outer right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The picture below shows two circle with the centers of Pand Q. 1949. The radius of PR = 12 cm, QS	1941.	· · · · · · · · · · · · · · · · · · ·																		-
the circle as seen on the picture is 1943. Study the picture on the right. 1944. If the length of its side is 14 cm, calculate the area of the shaded space 1946. Vour Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1948. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1949. The picture below shows two circle with the centers of Pand Q. 1949. The radius of PR = 12 cm, QS																				
1943. Study the picture on the right. 1945. 1946. 19	1942.	_																		-
1943. Study the picture on the right. 1944. If the length of its side is 14 cm, calculate the area of the shaded space 1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1948. Your answer is wrong 1947. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1949. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS																				
right. 1944. If the length of its side is 14 cm, calculate the area of the shaded space 1946. Your Answer is right. 1947. If the length of a cretangular side is 14 cm, then the circumference of the shaded space as seen on the picture is. 1948. Your answer is wrong 1948. The radius of Ericle outer right triangle whose the length are 3 cm, and 15 cm is 1949. The radius of PR = 12 cm, QS 1949. The radius of PR = 12 cm, QS		•																		
1944. If the length of its side is 14 cm, calculate the area of the shaded space 1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1948. Your answer is wrong 1948. The radius of circle outer right triangle whose the length are 3 cm, 4 cm, and 15 cm is 1949. The picture below shows two circle with the centers of Pand Q. 1949. The radius of PR = 12 cm, QS 1940. If the length of its side is 14 cm, check and the shaded shade shaded space as seen on the picture is 1940. Your answer is wrong 1941. The radius of circle outer right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS	1943.																			-
1945. cm, calculate the area of the shaded space 1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is. 1948. Your answer is wrong 1949. The radius of circle outer right triangle whose the lengths are 8 cm, and 15 cm is 1949. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS												1 1								
shaded space 1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1948. Your answer is wrong 1948. The radius of circle outer right triangle whose the side lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS	1944.	_																		-
1946. Your Answer is right. 1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1946. Your answer is wrong 1946. Your answer is wrong 1947. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the lengths are 8 cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS	1945.	The state of the s																		
1947. If the length of a rectangular side is 14 cm, then the circumference of the shaded space as seen on the picture is 1946. Your answer is wrong 1947. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS		shaded space																		
side is 14 cm, then the circumference of the shaded space as seen on the picture is 1946. Your answer is wrong 1947. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS	1946.	Your Answer is right.																		-
circumference of the shaded space as seen on the picture is 1946. Your answer is wrong 1947. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS	1947.	If the length of a rectangular																		-
space as seen on the picture is 1946. Your answer is wrong 1947. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS		side is 14 cm, then the																		
is 1946. Your answer is wrong 1947. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS 1949. The radius of PR = 12 cm, QS		circumference of the shaded																		
1946. Your answer is wrong 1947. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8 cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS		space as seen on the picture																		
1947. The radius of a circle inside right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS		is																		
right triangle whose the length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS 1949. The radius of PR = 12 cm, QS	1946.	Your answer is wrong																		-
length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS	1947.	The radius of a circle inside																		-
length are 3 cm, 4 cm, and 5 cm, is 1948. The radius of circle outer right triangle whose the side lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS		right triangle whose the																		
The radius of circle outer right triangle whose the side lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS		length are 3 cm, 4 cm, and 5																		
right triangle whose the side lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS																				
lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS	1948.	The radius of circle outer										٧			١	/				The radius of circle outer right
lengths are 8cm, and 15 cm is 1948. The picture below shows two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS		right triangle whose the side																		triangle with the side lengths of 8
is																				cm and 15 cm is
two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS -		is																		
two circle with the centers of P and Q. 1949. The radius of PR = 12 cm, QS -	1948.	The picture below shows																		-
1949. The radius of PR = 12 cm, QS -																				
1949. The radius of PR = 12 cm, QS -		of P and Q.																		
	1949.								1			1 1								-
		= 5 cm, and RS is the																		

	tangent of outer common.														
1950.	If PQ = 30 cm, then the							٧			٧				If PQ = 30 cm, the length of RS is
	length of RS is														
1951.	Study to the following		٧	'								٧			Study the following picture.
	picture														
1952.	If R = 10 cm, and OB = 20							٧			٧				If R = 10 cm, and OB = 20 cm, the
	cm, then the tangent of AB														tangents of AB are
	are														
1953.	Evaluation Result														
1954.	Total Question = 10														
1955.	Right Answer = 1,														
1956.	Your score is 10														

Table 7. Cube and Cuboids

No	Item									Ty	pes	of E	rro	rs											Caus	ses (of E	rror	`S		Alternative Corrections
					(vert	err	ors								Cov	vert	erro	rs				Ι	ı	С			nunio		on	
			nissio	_	addit			lectio			ering)miss			ditio		Sele				ring	n	n	О			gies		,	
		М	L	S	М	_ S	M	L	S	M	L S	- N	ΛL	S	М	L	S	M	L :	S	M	L S	t	t	n	Α		С			
																							е	r	t	٧	r	0	р	а	
																							r	-							
1957.	Polyhedra	٧																						٧							Polyhedral
1958.	Cube and Cuboid											٧	_											٧							Cube and Cuboids
1959.	Cube and Cuboid net											٧	'											٧							Cube- Cuboids net
1960.	Cube- Cuboid Dimension											٧	'											٧							Cube- Cuboids Dimension
1961.	Prism																														-
1962.	Pyramid																														-
1963.	Evaluation																														-
1964.	Cube and Cuboid sub topics											٧												٧							Cube and Cuboids sub topics
1965.	The element of cube and											٧	,											٧							The elements of cube and cuboids
	cuboid																														
1966.	Cube and cuboid name											٧												٧							Cube and Cuboids name
1967.	The diagonal of cube and											٧												٧							The diagonal of cube and cuboids
	cuboid																														
1968.	Select the submenu to learn																														-
	more																														
1969.	Face, edge, and vertex.																														-
1970.	Vertex																														-
1971.	Look at the figure of a cube																														-
	box below																														
1972.	In the following figure,																														-
	there are some edges that																														
	meet at one point																														
1973.	The intersection of 3 or											٧	'											٧							The intersection of 3 or more edges
	more edges is called a																														is called a vertex of the cube or
	vertex of the cube or cuboid																														cuboids.
1974.	Edge																														-
1975.	Look at the building below																														-

				 			 		-					
1976.	Look at the intersections													-
	between:	\perp												
1977.	One wall and another													-
1978.	The wall and the ceiling													-
1979.	the wall and the floor													-
1980.	The intersection is a line													-
1981.	Such a line in a cube or a					٧					٧			Such a line in a cube or a cuboids
	cuboid is called an edge													is called an edge.
1982.	Face													-
1983.	look at the figure of a box													-
	below													
1984.	The shape of the wood box					٧					٧			The shape of the wood box is a
	is a cuboid													cuboids.
1985.	The parts of the wood box													-
	are:													
1986.	Left and right faces													-
1987.	Front and back face													-
1988.	Top and base faces													-
1989.	Those parts of a cube and					٧					٧			Those parts of a cube and cuboids
	cuboid are faces													are faces.
1990.	Simulation													-
1991.	show the faces, edges, and													-
	vertices of the following													
	wood box													
1992.	Top-down side													-
1993.	left-right side													-
1994.	front-back side													-
1995.	Labeling cubes and cuboids													-
1996.	Each objects has a name, as													-
	the following figure													
1997.	A cube and cuboid also have					٧					٧			A cube and cuboids also have
	names													names.
1998.	A cube and cuboid are					٧					٧			A cube and cuboids are named
	named after the points of its													after the points of its base face and
	base face and top face													top face.

	I		 		,	 	 	 		 _	 		 	 		_		 	
1999.	If the cube is named after																		-
	each point, then the name																		
	of the cube is cube																		
	ABCDEFGH																		
2000.	ABCD = base face																		-
2001.	EFGH = top face																		-
2002.	Give a name to the							٧						٧	1				Give a name to the following
	following cuboid																		cuboids
2003.	The names of cuboids																		-
2004.	Properties of vertices of a							٧						٧	'				Properties of vertices of a cube and
	cube and a cuboid																		a cuboids
2005.	Vertices facing each other																		-
2006.	If two vertices of a cube or	٧		٧		٧								٧					If two vertices of a cube or
	cuboid, then a vertex of do																		cuboids, and a vertex do not
	not become a common																		become a common vertex in one
	vertex in one face, then they																		face, then they are facing each
	are facing each other																		other.
2007.	Examples: B and H, E and C																		-
2008.	Adjacent vertices																		-
2007.	if two vertices are on the																		-
	same edge, then they are																		
	adjacent vertices																		
2008.	Examples: B and C, A and D																		-
2009.	Find other adjacent vertices																		-
2010.	please try to find other																		-
	closed vertex.																		
2011.	Properties of edges of a							٧						٧	'				Properties of edges of a cube and a
	cube an a cuboid.																		cuboids.
2012.	1. Edges facing each other																		-
2013.	the edges of a cube and a	٧				T						T		٧	,				The edges of a cube and a cuboids
	cuboid are face each other																		are facing each other if both edges
	if both edges have no																		have no common point.
	common point																		
2014.	Examples: AB and GH, AD																		-
	and FG																		

			 		_				 								
2015.	Please find other edges																-
	facing each other																
2016.	2. Intersecting edges																
2017.	Examples: AB and BF, BC																-
	and CG																
2018.	Look at the following																-
	intersecting edges																
2019.	Please find other																-
	intersecting edges																
2020.	3. Skew edges																-
2021.	if two edges of a cube or a						٧		,	٧				٧			If two edges of a cube or a cuboids
	cuboid are not in one face,																are not in one face, they are skew
	then they are skew edges.																edges.
2022.	Example: AE and BC																-
2023.	Look at the following skew																-
	edges.																
2024.	Please find other skew																-
	edges																
2025.	The types of cubes and	٧			٧									٧			The types of cubes and cuboids are
	cuboid is classified into 3:																classified into 3: vertical,
	vertical, horizontal,																horizontal, orthogonal.
	orthogonal																
2026.	1. Parallel																<u>-</u>
2027.	Two faces of a cube and a							٧						٧			Two faces of a cube and a cuboids
	cuboid are parallel if they																are parallel if they do not intersect
	do not intersect at one point																at one point.
2028.	Example: ABFE and CDHG																-
2029.	please find other parallel																-
	faces																
2030.	2. Intersecting																-
2031.	two faces of a cube And a						٧							٧			Two faces of a cube And a cuboids
	cuboid are intersecting if																are intersecting if they intersect at
	they intersect at one point																one point.
3032.	Example: ABCD and ABFE																-
2033.	please try to find other																-

	into no otion force	$\neg \vdash$			Т					1 1							
2024	intersecting faces.	$-\!\!\!\!+$	+		-		+		_	1	_		-	++	-	-	
2034.	find out other intersecting faces.																-
2035.	Diagonals of a cube and a						٧							٧			Diagonals of a cube and a cuboids
	cuboid																
2036.	Look at the cube and cuboid						٧							٧			Look at the cube and cuboids
	below																below.
2037.	the diagonal of a face is																-
	obtained by connecting two																
	vertices facing each other.																
2038.	Each face of a cube and						٧							٧			Each face of a cube and cuboids
	cuboid has two diagonals																has two diagonals.
2039.	A diagonal is a line																-
	connecting vertices facing																
	each other on one face																
2040.	A diagonal of a cube and a						٧							٧			A diagonal of a cube and a cuboids
	cuboid																
2041.	1. A face diagonal																-
2042.	a face diagonal of a cube or						٧							٧			a face diagonal of a cube or a
	a cuboid is a line segment																cuboids is a line segment which
	which connects two vertices																connects two vertices facing each
	facing each other on the																other on the same face of a cube or
	same face of a cube or the																the cuboid .
	cuboid																
2043.	Example: BG, CH																-
2044.	Find other face diagonals																-
2045.	A cube or a cuboid has 12						٧							V			A cube or a cuboids has 12 face
	face diagonals																diagonals.
2046.	Find other face diagonals																-
2047.	2. A space diagonal																-
2048.	A space diagonal of a cube						٧							V			A space diagonal of a cube or a
	or a cuboid is a line segment																cuboids is a line segment which
1	which connects two vertices																connects two vertices facing each
1	facing each other on																other on different faces of the cube
	different faces of the cube																or the cuboids.
	or the cuboid																

	Examples: AG, CE												
2050 I F					1 1								-
	Find other face diagonals												-
	3. A diagonal plane												-
	A diagonal plane of a cube					٧				'	٧		A diagonal plane of a cube or a
	or a cuboid is a plane inside												cuboids is a plane inside a cube or a
	a cube or a cuboid made of												cuboids made of two parallel edges
	two parallel edges that are												that are not in the same face
	not in the same face												
	Examples: ABGH												-
	Find other diagonal planes												-
2055. A	A cube or a cuboid has 6					٧				•	٧		A cube or a cuboids has 6 diagonal
d	diagonal planes												planes.
2056. F	Find other diagonal planes												-
	Quiz												-
2058. L	Look at the dice and the tea												-
b	box below												
2058. Id	dentify the parts of the dice												-
а	and the tea box												
2059. If	f the dice is a cube, and the					٧					٧		If the dice is a cube, and the tea
te	tea box is a cuboid ,												box is a cuboids , complete the
C	complete the table below.												table below.
2060. O	Objects: dice, tea box												-
2061. N	Number of faces												-
2062. N	Number of edges												-
2063. N	Number of vertices												-
2064. C	Cube and cuboid net					٧				,	٧		Cube and cuboids net
2065. S	Subtopics: understand the	٧									٧		Subtopics: understanding the cube
C	cube and cuboid nets												and cuboids nets
2066. N	More example of cube and					٧					٧		More example of cube and cuboids
C	cuboid nets												nets.
2067. S	Select the menu to learn												-
n	more												
2068. V	What is a net?												-
2069. L	Look at the picture on the				1 1								-
	eft												

	T			 -		 	1				-	 			 	 _		<u></u>
2070.	Its shape is a cube																	-
2071.	If the wrapping is opened,																	-
	what can you see?																	
2072.	If it is opened, it shows its																	-
	net.																	
2073.	Thus, a net is a set of figures																	-
	that form a plane, when																	
	they are spread.																	
2074.	The cube net																	-
2075.	Cut a cube along some of its																	-
	edges, for instance, along																	
	PT, SW, -VR, QU, TU, VW,																	
	and P-S, and spread them																	
2076.	They form the cuboid nets																	-
2077.	Other example of the							٧						٧				Other examples of the cuboids
	cuboid nets																	nets.
2078.	Quiz																	-
2079.	Are you ready for quiz?																	-
2080.	Type your name then press																	-
	the enter																	
2081.	1. From the picture, which																	-
	one is the edges of a cube?																	
2082.	2. On the picture is cube																	-
	ABCD EFGH and one of it's																	
	edge, so the point E is on																	
	position number																	
2083.	3. From the picture of cube																	-
	edges below, square																	
	number G is the base, which																	
	square is the top of a cube																	
2084.	4. From four sets of squares																	-
	below which one is set of																	
	cube edges																	
2085.	(1) dan (2)				٧												٧	(1) and (2)
2086.	(1) dan (3)				٧												٧	(1) and (3)

2087.	(1) dan (4)	1		Τ,	v l	1	T	1 1	1			<u> </u>	1			Т	<u> </u>		Τ.	٧	(1) and (4)
2088.	(2) dan (3)				v V	-	+	1													(2) and (3)
2089.	5. The set of squares on the picture is edges of a cube.				V															•	-
2090.	The marked square is the base																				-
2091.	Which one is the top																				-
2092.	Total Questions = 5																				-
2093.	Right Answers = 3																				-
2094.	Your score is = 60																				-
2095.	Cube- Cuboid Dimension								٧						ν	'					Cube- Cuboids Dimension
2096.	Subtopics: 1. Surface area of cube and cuboid								٧						ν	'					Subtopics: 1. Surface area of cube and cuboids
2097.	2. The volume of cube and cuboid								٧						ν						2. The volume of cube and cuboids
2098.	Select the menu to learn more																				
2099.	Surface area of a cube and cuboid								٧						ν						Surface area of a cube and cuboids
2100.	Problem:																				
2102.	A factory will wrap its product in the form of a cuboid								٧						ν	'					A factory will wrap its product in the form of a cuboids .
2103.	Its length, width, and height are 20cm, 14cm, and 7cm respectively																				-
2104.	Everyday, the factory produces 100.000 boxes of snacks that are ready for sale.																				-
2105.	Find out the minimum surface area of paper needed to wrap the snacks everyday																				-
2106.	Solution								T								T	T	T		-

2107.	To solve the problem, we																-
	have to find the surface area																
	of the box																
2108.	To find the area of each					-	٧						٧			To f	find the area of each face, we
	face, we need to draw nets															nee	ed to draw nets of the cuboids
	of the cuboid box															box	(.
2109.	Find the area of each face of																-
	the box, and add all of the																
	areas.																
2110.	If the length of the box is p					٧					٧		٧		٧	If th	he length of the box is p unit,
	unit, the widht is I unit, and																width is I unit, and the height is
	the height is t unit, then the																nit, then the surface area of the
	surface area of the cuboid															cub	poids box can be calculated as
	box can be calculated as															follo	ows:
	follows																
2111.	left face																-
2112.	top face																-
2113.	front face																-
2114.	bottom face																-
2115.	back face																-
2116.	right face																-
2117.	Area of front face																-
2118.	Area of back face																-
2119.	Area of right face																-
2120.	Area of left face																-
2121.	Area of top face																-
2122.	Area of base face																-
2123.	Suppose the surface area of						٧						٧			Sup	ppose the surface area of the
	the cuboid is express by L,															cub	poids is express by L, then
	then																
2124.	The surface area of the cube																-
	if the edges lengths are the																
	same can be formulated as																
	follows																
2125.	Then, the surface area of																-

	1																									
	the box is																									
2126.	Thus, the minimum surface																									-
	area of paper needed to																									
	wrap the snacks everyday is																									
	1.036 x 100.000 = 103. 600.																									
	000 cm ² or 10. 360m ²																									
2127.	Example: The area of a cube																									-
	base is 20cm. So, the square																									
	area of the cube is																									
2128.	Solution: the square area of																									-
	the cube = cm ²																									
2129.	The area of the cube base =																									-
	20cm																									
2130.	Cube: the area of the cube																									-
	base = 20cm. So, the length																									
	of its side = the face area of																									
	the cube = 6x the base area																									
2131.	Volume of a cube and										٧										٧				\	Volume of a cube and cuboids
	cuboid																									
2132.	A volume of figure A is the																									-
	sum of small cubes in figure																									
	A.																									
2133.	A volume is measured in																									-
	cubic unit.																									
2134.	Figure A consists of 12 small																									-
	cubes (cubic units)																									
2135.	Suppose a small cube has a																									-
	volume of 1cm ³																									
2136.	Figure A has a volume of 12														l											-
	small cubes or 12 x 1 =																									
	12cm ³																									
2137.				1 1			1												1				1			-
	a cube, first we find the area																									
	the base face, and then																									
	multiply it by the height of																									
	the cube																									
		1 1	1	1	1	1 1	- 1	1	1	1	1	- 1	1	1	1 1	- 1	- 1	- 1	1	 - 1	- 1	- 1	1	- 1	1	·

2138.	Then, the formula of the																		-
	cube is:																		
2139.	To determine a volume of a						√								٧				To determine a volume of a
	cuboid, we must find its																		cuboids , we must find its width and
	width and its length																		its length.
2140.	If length = p, the width = I,						√								٧				If length = p, the width = I, and the
	and the height = t, then the																		height = t, then the volume of a
	volume of a cuboid can be																		cuboids can be calculated using the
	calculated using the																		following formula.
	following formula																		
2141.	Example																		-
2142.	Determine the volume of a																		-
	cube that has the face area																		
	1.176 cm ²																		
2143.	Solution: The cube volume =																		-
	cm ³																		
2144.	The cube has 6 faces.																		-
	Therefore, the area of a																		
	cube face = 1.176 : 6 = 196																		
	cm ²																		
2145.	The length of a cube =																		-
	14cm, so the cube volume =																		
	2744 cm ³																		
2146.	Example 2 : Determine the																		-
	volume of a box that can be																		
	made from the net on the																		
	right.		+ +							-									
2147.	Solution: the box volume =																		-
	cm ³																		
2148.	Quiz																		-
2149.	Are you ready for quiz?		++	\vdash	_			+	_	_		_	-		_	_		_	
2150.	Type your name than press				٧										٧				Type your name then press enter.
	enter		++	\vdash	_			+					-		_	_			
2151.	1. If the one of the diagonals																		-
	of a cube face is 50 cm, the																		
	area of the cube face is																		

2152.	2. Given the cube volume 216 cm ³	٧		٧										٧			the cube's volume is 216 cm ^{3.}
2153.	3. The net area of the cuboid whose size is 15cm x 10 cm x 6 cm is					٧								٧			3. The net area of the cuboids, which has size of 15cm x 10 cm x 6 cm, is
2154.	The total number of the length of the cube edges is																-
2155.	4. Given the length of a cuboid is 12 cm, the width is 4cm, and the height is 6cm	٧		٧									٧	٧			The length of a cuboids is 12 cm, the width is 4cm, and the height is 6cm.
2156.	The area of the cuboid face is	٧												٧			The area of the cuboids' face is
2157.	Total Questions = 5																-
2158.	Right Answers = 0																-
2159.	Your score is = 0																-
2160.	Prism																-
2161.	Sub topics: 1. Definition of prism																-
2162.	2. The diagonal prism																-
2163.	3. The net of prism																-
2164.	4. The dimension of prism																-
2165.	Select the sub menu to learn more																-
2166.	Definition of a prism																-
2167.	Look at the top part of the picture																-
2168.	In mathematics, such a figure is called a triangular prism																-
2169.	The prism shown in the picture is constructed of two congruent and parallel triangular faces and three rectangular faces.																-
2170.	A prism is a closed three																-

													-	_	
	dimensional figure														
	constructed of two parallel														
	and congruent polygonal														
	face, and its other faces are														
	rectangles.														
2171.	a face diagonal of a prism														-
2172.	A face diagonal of a prism is														-
	a line segment connecting														
	two vertices located on														
	different edges and on one														
	face														
2173.	Examples AE, BD														-
2174.	Look at the following														-
	examples of face diagonals														
	of a prism: CE, BF														
2175.	Are there other face														-
	diagonals of a prism?														
2176.	Find them out														-
2177.	Net of a prism														-
2178.	The net of a prism is a plane,														-
	made of a set of faces that														
	form a prism.														
2179.	Area and volume of a prism														-
2180.	Area of a prism														-
2181.	Look at the figure of a prism														-
	net on the left														
2182.	The shape of the net is a														-
	right triangular prism														
2183.	The area of a prism is the														-
	total of the face areas of the														
	prism														
2184.	Area of a prism ABCD.DEF =														-
	area of a triangle ABC + area														
	of ADFC + area of ABED +														
	area of BCFE + area of														
	triangle DEF														

									1 -						
	So area of a prism ABC.DEF														-
	= 2 base areas + (base														
	perimeter x height)														
	Example: The base edges of														-
	right triangular prism are														
	5cm, 12cm, qnd 13cm														
	respectively.														
	its height is 10cm														-
2188.	Find the area of the prism														-
2189.	Solution: area of the prism =														-
	cm ²														
2190.	If a and b are perpendicular														-
	edges, and c is the length of														
	the base edge, t is the														
	height of prism														
	Calculate the area of the														-
	prism!														
	Volume of a prism														-
	The volume of a prism can														-
	be calculated using the														
	following formula: volume														
	of prism = area of base x														
	height														
	Remember that the height														-
	of a prism is determined by														
	rectangular faces that are														
	walls forming a prism.														
	1. Calculate the volume of a														-
	prism shown in the														
	following figure														
2196.	Solution: volume of prism =				1 1				1						-
	Solution: volume of prism = Cm ²														
2197.	The above figure shows a									ΙΤ	T				 -
	prism.														
2198.	Its base is a rectangle that														-
	has the same edges														

2199.	Length of edge = 8cm															-
2200.	Height of a prism = 15cm															-
2201.	Calculate the volume of a prism?															-
2202.	First, found out the height of the base triangle, say h															-
2203.	Area of prism base = area of equilateral tria	٧													٧	Area of prism base = area of equilateral triangle.
2204.	Volume of a prism = area of base x height															-
2205.	Quiz															-
2206.	Are you ready for quiz?															-
2207.	Type your name than press enter				٧							٧	1			Type your name then press enter.
2208.	A prism has base in triangle form															-
2209.	It's lateral are 3 cm, 4 cm, and 5 cm															-
2210.	if the height of prism is 12 cm, there are is															-
2211.	2. How much is the volume of a prism which has base in right feet triangle form.				٧							٧	'			2. what is the volume of a prism which has base in right feet triangle form?
2212.	The right feet lateral are 13 cm, and the other lateral is 10 cm															-
2213.	If the height of a prism is 15 cm.															-
2214.	The area of a prism is															-
2215.	4. A prism has base in right angled triangle form.															-
2216.	It's lateral are 9 cm, 12 cm, and 15 cm															-
2217.	If the height of prism is 20 cm, the volume of prism is															-

2219. Total Questions = 4		T T	 	 		1 1	-		 	- 1			 -				1
2220. Right Answers = 0	2218.	Quiz Result														-	
2221. Your score is = 0		<u> </u>														-	
2222. Pyramid		Right Answers = 0														-	
2223. Sub topics: 1. Definition of a pyramid 2224. 2. The diagonal pyramid 2225. 3. The net of pyramid 2226. 4. The dimension of pyramid 2227. Select the sub menu to learn more 2228. Look at the picture on the left 2229. The shape of the tent is a pyramid 2230. In the picture, there are 1. The base face which is quadrilateral 2231. 2. Slant faces which are equilateral triangles 2232. A pyramid is a three	2221.	Your score is = 0														-	
pyramid 2224. 2. The diagonal pyramid 2225. 3. The net of pyramid 2226. 4. The dimension of pyramid 2227. Select the sub menu to learn more 2228. Look at the picture on the left 2229. The shape of the tent is a pyramid 2230. In the picture, there are 1. The base face which is quadrilateral 2231. 2. Slant faces which are equilateral triangles 2232. A pyramid is a three	2222.	Pyramid														-	
2225. 3. The net of pyramid	2223.															-	
2225. 3. The net of pyramid	2224.	2. The diagonal pyramid														-	
2227. Select the sub menu to learn more 2228. Look at the picture on the left 2229. The shape of the tent is a pyramid 2230. In the picture, there are 1. The base face which is quadrilateral 2231. 2. Slant faces which are equilateral triangles 2232. A pyramid is a three	2225.															-	
2227. Select the sub menu to learn more 2228. Look at the picture on the left 2229. The shape of the tent is a pyramid 2230. In the picture, there are 1. The base face which is quadrilateral 2231. 2. Slant faces which are equilateral triangles 2232. A pyramid is a three	2226.	4. The dimension of pyramid														-	
left 2229. The shape of the tent is a pyramid 2230. In the picture, there are 1. The base face which is quadrilateral 2231. 2. Slant faces which are equilateral triangles 2232. A pyramid is a three	2227.	Select the sub menu to learn														-	
pyramid 2230. In the picture, there are 1. The base face which is quadrilateral 2231. 2. Slant faces which are equilateral triangles 2232. A pyramid is a three	2228.	-														-	
The base face which is quadrilateral 2231. 2. Slant faces which are equilateral triangles 2232. A pyramid is a three	2229.	I - I														-	
equilateral triangles 2232. A pyramid is a three	2230.	The base face which is														-	
	2231.															-	
dimensional figure constructed of a polygon as the base face and triangles as the slant faces	2232.	dimensional figure constructed of a polygon as the base face and triangles														-	
2233. Diagonal of a pyramid	2233.	Diagonal of a pyramid															
2234. 1. A face diagonal -	2234.	1. A face diagonal														-	
2235. A face diagonal of a prism is a line connecting two vertices facing each other on the prism base.	2235.	a line connecting two vertices facing each other														-	
2236. Examples : AC, BD -	2236.													1		-	
2237. 2. A plane diagonal																-	
2238. A plane diagonal of a																-	

	1		 					 	_			 		T	
	pyramid is a plane passing														
	through base diagonal and														
	top point of the pyramid														
2239.	Examples: TAB, TCD														-
2240.	In other pyramid shapes, a														-
	number of plane diagonals														
	can be found using formula														
	as follows														
2241.	number of plane diagonal of														-
	a pyramid of angle n is														
2242.	A net of pyramid														-
2243.	Look at the figure (a)														-
2244.	Picture (a) is a quadrilateral														-
	pyramid														
2245.	If its faces are spread, they														-
	will form a plane as shown														
	by picture (b)														
2246.	The set of pyramid faces is														-
	called a net-														
2247.	A pyramid net is a plane,														-
	made of a set of faces that														
	form a pyramid														
2248.	Area of a pyramid														-
2249.	Look at figure (a)														-
2250.	There is a figure of pyramid														-
	T.ABCD														
2251.	Figure (b) shows the net of														-
	the pyramid														
2252.	The area of a pyramid is the														-
	sum of face areas of the net														
2253.	Area of a pyramid = (area of														-
2254.	4 isosceles triangles) + area														
	of 1 square or area of														
	pyramid = 4 x area stand														
	plane + 1 area quadrilateral														

2255.	Problem														-
2256.	Calculate the area of a square whose length of the base edge is 5 cm, and the height of the slant edge is 6 cm?				٧							٧			Calculate the area of a square which has length of the base edge of 5 cm, and the height of the slant edge is 6 cm.
2257.	Solution: Area of pyramid = cm ²														-
2258.	Given length of base edge (a) = 5 cm height of slant edge (c) = 6		٧									٧			length of base edge (a) = 5 cm height of slant edge (c) = 6.
2259.	Area of a pyramid?	٧										٧			What is the area of a pyramid?
2260.	Answer: Area of a pyramid = 85 cm ²														-
2261.	Volume of a pyramid														-
2262.	Figure (a) shows a cube														-
2263.	Its edge length is 2t.														-
2264.	All of the face diagonals are intersect at point P.														-
2265.	In a cube, there are six quadrilateral and congruent pyramids														-
2266.	One of the pyramids is the pyramid P.ABCD as shown in at figure (b)														-
2267.	The height of PQ is half of the length of the cube edge, t.														-
2268.	The total of volume of six pyramids is the same as the volume of a cube														-
2269.	Volume of cube ABCD.EFGH = 6 x volume of pyramid P.ABCD														-
2270.	Volume of pyramid P.ABCD														-

	1			I												
	$=\frac{1}{3}$ x area of base x height															
2271.	Problem															-
2272.	Have you ever heard one of the seven wonders in the world called a pyramid?	٧										٧				Have you ever heard of one of the seven wonders in the world called a pyramid?
2273.	Pyramid can be found in Egypt.															-
2274.	They are places to keep corpses of Kings of Egypt (Pharaohs) preserved by embalming them.			٧		٧						٧		٧		They are places to preserve corpses of Kings of Egypt (Pharaohs) by embalming them.
2274.	They are called mummies															-
2275.	The shapes of the places are pyramids															-
2276.	The area of the base is approximately 300. 000 square feet and the height is 321 feet.															-
2277.	What is the volume of the pyramid?															-
2278.	Solution: volume pyramid = feet ³															-
2279.	Given: the area of base A (a) = 3000 kaki			٧								٧				The area of base A (a) = 3000 feet.
2280.	The height (h) = 321 kaki				٧										٧	The height (h) = 321 feet
2281.	What is the volume of the pyramid?															-
2282.	Answer: volume of the pyramid = 32. 100. 000 feet ³															-
2283.	Pyramid Quiz															-
2284.	Are you ready for quiz?															
2285.	Type your name than press enter				٧							٧				Type your name then press enter.
2286.	1. A pyramidal has a base of right feet triangle.		٧									٧				1. A pyramid has a base of right feet triangle.

2287.	Its's right feet triangle.		٧										٧		Its right feet is triangle.
2288.	The other lateral is 12 cm,	1	† †												-
	the height of prism is 15 cm,														
	the volume of prism is														
2289.	2. A pyramidal has a base of		٧		١	/							٧		2. A pyramid has a base of rhomb,
	rhomb, it's laterals are 13														its laterals are 13 cm, one of its
	cm, one of it's diagonals is														diagonals is 10 cm, height of
	10 cm, height of pyramidal														pyramid is 15 cm the volume of the
	is 15 cm the volume of														pyramid is
	pyramidal is														
2290.	3. How much is the surface		٧	•	٧								٧		3. what is the surface area of a
	area of a pyramidal, which														pyramid, which has base lateral of
	has base lateral of 10 cm														10 cm and height of 12 cm
	and height of 12 cm														
2291.	4. How much is the surface	٧	٧	'	٧								٧		4. What is the surface area of a
	area of a rectangle														rectangle pyramid , which has base
	pyramidal. Which has base														edge of 5 cm and apothem of 6
	edge of 5 cm and apotem of														cm
	6 cm		\perp												
2292.	5. Pyramidal T.ABCD AB =		٧										٧		5. Pyramid T.ABCD AB = BC= CD=
	BC= CD= AD= 14 cm										1				AD= 14 cm.
2293.	TA = TB = TC = TD = 25 cm		\perp												-
2294.	the area of it's vertical face														-
	is										1				
2295.	Quiz Result										1				-
2296.	Total Questions = 5										1				-
2297.	Right Answers = 0										1				-
2298.	Your score is = 0		\perp												-
2299.	Polyhedra Evaluation		\perp				٧						٧		Polyhedral Evaluation
2300.	Are you ready for														-
	evaluation?														
2301.	Type your name than press				٧								٧		Type your name then press enter.
	enter		\perp					<u> </u>							
2302.	1. If one of face diagonal of														-
	a cube is 50 cm, the area of														
	cube face is														

				 			 	-	-	, .	 - 1	 	 	 	 		 	1		
2303.	2. The picture below shows																			-
	edges of a cube.																			
2304.	If square number 3 is the																			-
	top (cover) of cube, which																			1
	one is the base																			
2305.	3. The sketh below shows a									٧					٧	'				3. The sketch below shows a scout
	scout tent in a prism form.																			tent in a prism form.
2306.	the area of it's base is 10m ²					٧	٧								٧	'				The area of its base is 10m ² width 2
	width 2 m and heigth 3 m																			m and height 3 m.
2307.	How much is the volume of							٧							٧	'				What is the volume of the tent
	the tent																			1
2308.	4. A pyramidal has a base of			٧											٧	'				4. A pyramid has a base of
	parallelogram																			parallelogram.
2309.	It's base and heigth are 12					٧	٧								٧	'				Its base and height are 12 cm and
	cm and 10 cm																			10 cm.
2310.	if the volume is 600 cm ³ , the			٧				٧							٧	'				if the volume is 600 cm ³ , the height
	heigth of pyramidal is																			of pyramid is
2311.	5. Base perimeter of a cube																			-
	is 20 cm																			
2312.	the area of cube is																			-
2313.	6. A workman construct a	٧													٧	'				6. A workman constructs a cubical
	cubical tub.																			tub.
2314.	It's top and front face are 50					٧									٧	'			٧	Its top and front face are 50 m ² and
	m² dan 30 m²																			30 m ²
2315.	If the front edge is 10 m, the																			-
	volume of tub is																			<u> </u>
2316.	7. ABCD. EFGH is a cube.																			-
2317.	It's edges is 6 cm.					٧									٧	'				Its edges is 6 cm.
2318.	volum of pyramidal T.ABCD	٧		٧											٧	'	٧			volume of pyramid T.ABCD is
	is																			<u> </u>
2319.	8. How many space diagonal		٧												٧	'				8. How many space diagonal does a
	does a eight sided prism																			eight sided prism have
2320.	9. A prism has a base of																			-
	right angled triangle.																			1
2321.	It's lateral are 6 cm, 8 cm,					٧									٧	'				Its lateral are 6 cm, 8 cm, and 10

	T			1				1 1		1 1		1 1	 		1 1		1 1	
	and 10 cm														_			cm
2322.	If it's heigth is 15 cm, the				٧	٧								٧				If its heigh t is 15 cm, the volume
	volume is																	is
2323.	10. How many faces, edges,																	-
	vertex does a cube have																	
2324.	11. How many edges does a																	-
	five sided prism have																	
2325.	12. Volume of prism, which																	-
	has a base of right feet																	
	triangle is																	
2326.	13. A pyramidal has a base		٧											٧				13. A pyramid has a base of right
	of right feet triangle																	feet triangle
2327.	The right feet lateral are 10																	-
	cm																	
2327.	The other lateral is 12 cm,											٧		٧				The other lateral is 12 cm, and the
	and the heigth is 15 cm																	height is 15 cm
2328.	The volume of pyramidal		V											٧				The volume of pyramid is
	is																	
2329.	14. Among these sets of																	-
	squares, which one is the																	
	edges of a cube																	
2330.	15. How many faces does a																	-
	six sided prism have?																	
2331.	Evaluation Result																	-
2332.	Total Question = 15																	-
2333.	Right Question = 7																	-
2334.	Your score is = 46, 66666666																	-