
PROCEEDING                                                       ISBN : 978-602-1037-00-3 
     

 

 

This paper has been presented at International Seminar on Innovation in Mathematics and Mathematics 

Education 1st ISIM-MED 2014  “Innovation and Technology for Mathematics and Mathematics 

Education” Department of Mathematics Education,Yogyakarta State University 

Yogyakarta, November 26-30, 2014 

 S –3 

An Algorithm of Nonparametric Maximum Likelihood Estimation  

for Bivariate Censored Data 

 
Mohamad Fatekurohman 

Department of Mathematics, Jember University 

Ph.D. student, Department of Mathematics, Gadjah Mada University 

m_fatkur@yahoo.com 

Subanar, Danardono 

Department of Mathematics, Gadjah Mada University 

{subanar, danardono}@ugm.ac.id 

 

Abstract 

 
 Censored data, univariate or bivariate and left/right censored data, and interval censored data 

can be represented by its intersection graph (Gentleman and Vandall, 2002).  Studies on the censored 

data, especially bivariate censored data, have been discussed by several experts. Maathuis (2003) 

discussed the nature of the maximum likelihood estimator (MLE) for bivariate censored the data 

computational and algorithmic aspects while estimates of the bivariate distribution function for the 

censored data have been discussed by Campbell and Foldes (1982), Burke (1988), Prentice and Cai 

(1992), Pruitt (1993) and Prentice (1999). Some researchers argue that nonparametric maximum 

likelihood estimator (NPMLE) is difficult to quantify and is not unique so new methods are needed.  

The case of bivariate interval censored data consists of two parts. The first involves the 

determination of the regions of possible support and the second is the maximization of the likelihood, i.e. 

the rectangles with non-zero mass are calculated. In this paper we use rooted tree for finding the 

estimator. As the results, the rooted tree level has at most n then there are n iteration, so that the total 

complexity time is O(n
3
). 

Keywords: bivariate cencored data, intersection graph, NPLME, rooted tree.  

 

1. Introduction 

 Three algorithms that can be applied to determine the NPMLE of S, F or p. The 

first is the self-consistency algorithm that was developed by Turnbull (1976) and can be 

regarded as an application of the EM algorithm (Dempster et al., 1977). The second 

algorithm is the ICM algorithm, first introduced by Groeneboom and Wellner (1992) 

and later modified by Jongbloed (1998).The third algorithm is a hybrid algorithm 

proposed by Wellner and Zhan 1997), which is referred to as the EM-ICM algorithm in 

the following. It basically combines the self-consistency algorithm and the ICM 

algorithm. Pada paper ini akan disajikan The computation is simplified through the use 

of a so-called reduction tree, which limits the need to detect maximal intersections to 

leaf-sets only (these can be thought of as "local" data sets). 

 

2. Optimal Condition MLE 

Suppose Ri is an observation in the form of a rectangle or line segment on (Xi;Yi) and  if 

= {R1, R2..., Rn } denote the set of observations , then the function log likelihood 

  )(log)(
1

iF

n

i

n RPFl 


    (1) 

Suppose  the classes of all bivariate distribution functions , the MLE is a convex 

optimization problem solving infinite dimensional: 
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The following theorem will be presented and the entry relating to the MLE and NPMLE 

 

Theorem 2.1 (Maathuis, 2003) 

An MLE p̂ always exists. 

Proof: 

The set 







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1,,..3,2,1,0:
1

m
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jj

m pmjpRp over which (2), is maximized is a 

bounded and closed set in ℝm
 and therefore compact. The object function in (2) is 

continuous in p, and a continuous function on a compact set attains its maximum. 

 

Lema 2.1 (Genteman & Vandall, 2002) 

Any CDF which increases outside the set ℋ cannot be a MLE of F. 

Based on Lema 2.1: allows us to parameterize F by setting pi=PF(Hi). The optimization 

problem can than be stated in term of the vector p = m

iip 1}{  , subjected to the constraints 

that pi=1 and pi≥0 for all i. Now, the likelihood can easily be rewritten in term of p, 

since  
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with A clique matrix. 

L(p|R1, R2, R3,…, Rm) is some what informal in the sense that the dimension m of p 

depends on the data R1, R2, R3,…, Rm. 

So that p restricated to the simplex and with Theorem 2.1,  
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and )'log(')( pAepl
def

 , e a vector of all elements is 1 and mp  .  

obtained MLE of F is p, denote p̂ .  

3. Rooted tree to calculate the NPMLE 

 For the calculation of the data censored NPMLE can be done with a rooted 

tree approach. The idea is based on the fact that the data can be partitioned into 

censored groups disjoint set.  
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Definition (Chartrand and Oellermann, 1993) 

A directed graph is called a directed tree if the graph becomes a tree if ignored him . A 

directed tree is called a rooted tree if there is exactly one vertex with incoming degree 0 

and all other vertices have degree entry 1. In a rooted tree , a vertex is called the out 0 

leaves, while the vertex degrees do not zero is called a branch. 

Rooted Tree 

We call an observation universal if it intersects aIl other observations. For data set ℛ 

denote by ℛ( )
 the data set ℛ in which aU universal observations are removed. When 

data set ℛ can be partitioned into G groups ℛ1, ℛ2, ℛ3,…, ℛG, such that observations 

from different groups do not intersect, we say that the data set is dividable.  

The clique matrix Amxn of a dividable data set ℛ can be written in the form A=

















GA

A1

, where [A1]n1xm1,…, [AG]nGxmG is cliques matrix,  for  ℛ1, ℛ2, ℛ3,…, ℛG, 

and m = m1+ m2+ m3 +..+mG, and n = n1+ n2+ n3 +..+nG. 

Suppose p partitioned into groups such as 
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, g=1,2,3,…,G. Therefore if 
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ˆ  is the NPMLE for A, for each g =1,2,3,…,G, then  
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Here the probability mass allocated to the group g oleh NPMLE adalah ng/n. 

 

Principles of Rooted Trees 

The above discussion leads to the establishment of the following two simplifying 

principles in the computation of the NPMLE. 

  l.  Universal observations play no role in finding NPMLE and we can simply 

ignore them for estimation purposes. Thus we need only consider data sets in 

which aIl universal observations are removed. 

2. If a data set is dividable into groups ℛG, g =1,2,3,…,G, with G ≥2, maka, then 

we can find the NPMLE for each group ℛG separately with group total mass | 

ℛG |/| ℛ|. 

We can recursively apply the above two principles to form the reduction tree of the data, 

as described below. The tree's nodes are subsets of the original data set ℛ, while the root 

of the tree is set to be ℛ itself. 
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Case 1: ℛ dividable, then we let the groups for ℛ’s, say ℛ1, ℛ2, ℛ3,…, ℛk be the 

children of ℛ. 

Case 2: ℛ has a universal observation (and hence is not dividable), then we let ℛ( )
be 

the only child of ℛ.  

Case 3: ℛ neither contains universal observations nor is dividable, Then we let ℛ be a 

leaf. 

Recursive approach for each  ℛj (case 1) and ℛ(r)
 produce a rooted tree , the leaves of 

the tree rooted can not be divided and free from universal observation , because the set 

of leaves of a single tree is rooted . 

 NPMLE mass divided into each leaf can be obtained in the formation of the 

tree rooted with the road, put on the root mass is 1 Suppose ℛ * is a collection of 

observations in a vertex in an arbitrary level in the tree roots . Waste mass will not 

change between ℛ* and ℛ )(

*

r . When ℛ* ( or ℛ )(

*

r same may case) be shared , the roots of 

the sub- tree ℛ * ( or ℛ )(

*

r ) will be assigned to the mass proportional to the number of 

observations in each vertex, with equal mass total ℛ*. Rooted tree construction process 

, that total mass NPMLE always occupying every single leaf . 

 To get NPMLE given by the original data , focused only on the leaves of the 

tree rooted. Suppose ℛ1, ℛ2, ℛ3,…, ℛL, data set corresponding to the leaves of the tree 

rooted with mass 

 m1, m2, m3,…, mL, and if kp̂  NPMLE is a probability vector for a given set of data  ℛk 

with k=1,2,3,…,L, the NPMLE obtained from the original data set is  


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, with

kp̂  NPMLE is obtained from each of the original data set ℛk , for k=1,2,3,…,L. 

 

Example: 

Consider the right-censored data set ℛ={R1, R2, R3, R4, R5}, where R1=6
+
, R2=7, R3=8

+
 , 

R4=10, and R5=20
+
 .   

Level 0 (root). The adjacency matrix of ℛ1’s intersection graph is 
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R1 is universal observation in ℛ1 and ℛ },,,{ 5432
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r intersection graph is
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  ℛ1.2 }.,,{ 543 RRR
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  
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mass allocation ℛ2 ,
4

1
}{ 2  R

def

and ℛ3

4

3
},,{ 543  RRR

def

 

Level 1. ℛ1.1 is a leaf , The adjacency matrix for ℛ1.2 intersection graph is  
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Then ℛ1.2 has universal observation R3. ℛ
)(

2.1

r

5

4

54
10

01
},{

R

R
RR

def









  

ℛ )(

2.1
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def

 dan ℛ1.2.2 }{ 5R
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 , and mass alocation 
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1
  and

8

3

4

3

2

1
54  xRxR , respectively. 

Level 2. ℛ1.2.1 andℛ1.2.2 leaves. 
 

Ilustrastrated ℛ* and ℛ )(

*

r .  

   
 
 
 
 

 
 
 
 
 

  
 
 

Figure1. Rooted Tree  
 
We obtain 3 leaves{R2}, {R4}and R5} with masses1/4, 3/8 and 3/8. In this case, the 3 
leaves are maximal cliques and the NPMLE associated with data set ℛ is 

'

8

3

8

3

4

1
p̂ 








 . 

 NPMLE obtained with a rooted tree approach leads to Kaplan - Meier 
estimates for each right- censored data sets. This approach is identical to the 
redistribution algorithm Efron (1967 ) univariate right censored data. While the data for 
multivariate censored , generally, not necessarily a single leaf as in Example. 

. 
Complexity analysis of the implementation of a rooted tree 
 The first step is to construct a rooted tree graph intersection . Intersection 
graph algorithms have time complexity  O(n

2
), Lee (1983). While the time complexity 

for the rooted tree is  O(n
3
). At the root vertex, get a universal observation (by checking 

the degree of each vertex in the graph intersection ), has obtained a linear time. 
Determining connectedness components have time complexity O(n

2
). At the root level , 

the execution time is not more than Cn
2
, for a constant  C. At the first level vertex, k 

contains a component that is  n1, n2,…,nk. each observation, where n1+ n2+…+nk ≤ n. 
Regarding the first level of each vertex , such as the new root, has less than 

 )..._(... 22

2

2

1

22

2

2

1 kk nnnCCnCnCn    

   22

21 )...( CnnnnC k   

Root 
{R1,R2,…,R5}=1 

{R2}=1/4 {R3,R4,R5}      {R4,R5}=3/4 

{R4}=1/2 x 3/4 = 3/8 {R5}= 1/2 x 3/4= 3/8 
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Because tree roots have roots level most n, then there are as many as n recursion, so that 
the total execution time is O (n

3
). 

 
Remarks:  
Univariate and bivariate to the data , the performance of the algorithm requires more 
study 
detailed scheme for the different sensors . The main advantage of finding a rooted tree is 
the data univariate and bivariate NPMLE simplification of the calculation  
 

Steps Rooted Tree Algorithm 

 Getting Started (0) is the root , which enter the intersection graph matrix results  

( whether or not having a universal observation ) 
 Step 1, a leaf , at this step contains observations are not universal , if contains the 

probability mass is 0, otherwise the probability mass can be sought from the rest 
of the matrix. (This step will be repeated until all the probability mass is 
obtained) 
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