Kode / Rumpun Ilmu: 111 / Fisika

USUL PENELITIAN

HIBAH PENELITIAN KERJASAMA ANTAR PERGURUAN TINGGI (HIBAH PEKERTI)

ELEKTROMAGNETIK DEUTERON; MODEL PERTUKARAN PARTIKEL DALAM INTERAKSI KUAT GAYA INTI DITINJAU DARI FUNGSI GELOMBANG NON-RELATIVISTIK DAN RELATIVISTIK DALAM POTENSIAL OPEP

TPP:

R. Yosi Aprian Sari, M.Si / 19730407 200604 1 001 / 0007047308 (Ketua) Denny Darwmawan, M.Sc /197912022003121002/ 0002127901 (Anggota) TPM:

Prof. Dr. Agung Bambang Setio Utomo, SU / 19580502 198403 1 003 / 0002055807 (Ketua) Dr. Arief Hermanto, SU., M.Sc / 19610304 198503 1 003 / 0004036104 (Anggota)

UNIVERSITAS NEGERI YOGYAKARTA DESEMBER 2013

HALAMAN PENGESAHAN PENELITIAN KERJASAMA ANTAR PERGURUAN TINGGI

Judul Kegiatan

ELEKTROMAGNETIK DEUTERON; MODEL PERTUKARAN PARTIKEL DALAM INTERAKSI KUAT GAYA INTI DITINJAU DARI FUNGSI GELOMBAN GNON-RELATIVISTIK DAN RELATIVISTIK DALAM

POTENSIAL OPEP

Kode/Nama Rumpun Ilmu : 111/Fisika

Bidang Unggulan PT : Imu Non Kependidikan Topik Unggulan : Bidang MIPA-Teknologi

Ketua Peneliti

A. Nama Lengkap : R YOSI APRIAN SARI M.Si.

: 0007047308 B. NIDN

C. Jabatan Fungsional : Lektor D. Program Studi : Pendidikan Fisika : 081578010933 E. Nomor HP

F. Surel (e-mail) Anggota Peneliti (1)

: DENNY DARMAWAN S.Si.,M.A. A. Nama Lengkap

: 0002127901 B. NIDN

: UNIVERSITAS NEGERI YOGYAKARTA C. Perguruan Tinggi

: ryosia@uny.ac.id

Ketua TPM

A. Nama Lengkap : AGUNG BAMBANG SETIO UTOMO

B. NIDN : 0002055807 C. Jabatan Fungsional : Guru Besar

D. Nama Perguruan Tinggi : UNIVERSITAS GADJAH MADA

E. Program Studi : Fisika Lama Penelitian Keseluruhan : 2 Tahun

Penelitian Tahun ke : 2

Biaya Penelitian Keseluruhan : Rp 200.000,000,00

Biaya Tahun Berjalan : - diusulkan ke DIKTI Rp 100.000.000,00

- dana internal PT Rp 0,00 - dana institusi lain Rp 0,00

- inkind sebutkan

Mengetahui EMIPA UNY

96203291987021002

12 - 2013. Yogyakana, 2

Ketua Peneliti.

(R YOSI APRIAN SARI M.Si.)

NIP/NIK197304072006041001

Anik Gufron, M.Pd)

196211111988031001

DAFTAR ISI

1.	Halaman San	npul	i
2.	Halaman Pen	gesahan	ii
3.	Daftar Isi		iii
4.	Ringkasan		iv
5.	BAB 1. Pend	ahuluan	1
6.	BAB 2. Tinja	uan Pustaka	6
7.	BAB 3. Meto	de Penelitian	14
8.	BAB 4. Biaya	a dan Jadwal Penelitian	16
	4.1 Anggar	an Biaya	16
	4.2 Jadwal	Penelitian	16
9.	BAB 5. Pelak	ssanaan Kerjasama Penelitian	18
10.	Daftar Pustak	ca	20
11.	Lampiran-La	mpiran	22
	Lampiran 1	Justifikasi Anggaran Penelitian	22
	Lampiran 2	Dukungan Sarana dan Prasarana	25
	Lampiran 3	Susunan Organisasi Tim Peneliti dan Pembagian Tugas	26
	Lampiran 4	Biodata Ketua dan Anggota	27
	Lampiran 5	Surat Pernyataan Ketua Peneliti	35
	Lampiran 6	Endorsement	37
	Lampiran 7	Pernyataan dari Atasan Langsung TPP	39
	Lampiran 8	Pernyataan TPP	42

RINGKASAN

Interaksi nukleon-nukleon (dua nukleon atau lebih) yang dapat berupa interaksi kuat, interaksi elektromagnetik dan interaksi lemah yang menentukan sifat-sifat atau perilaku inti. Interaksi dua nukleon dapat berwujud interaksi proton-proton, neutron-neutron dan proton-neutron. Pada interaksi proton-neutron pada keadaan terikat dihasilkan inti baru yang disebut *deuteron*. Bentuk yang paling sederhana dari potensial interaksi ini adalah potensial pertukaran satu-pion (OPEP). Tujuan jangka pendek dari penelitian ini adalah pada tahun pertama mengetahui karakterisasi sifat-sifat elektromagnetik deuteron dari fungsi gelombang non-relativistik, dan pada tahun kedua selain karakterisasi sifat-sifat elektromagnetik deuteron dari fungsi gelombang relativistik dalam potensial OPEP, juga menelaah aplikasinya dalam bidang medis berupa terapi pion, yaitu dengan interaksi pion dengan materi (bagian tubuh manusia). Sedangkan tujuan jangka panjangnya adalah eksplorasi komprehensif karakteristik deuteron dibawah pengaruh potensial OPEP dan mengembangkan potensi aplikasi terutama di bidang medis, yaitu terapi pion.

Dalam penelitian ini, langkah awal yang ditempuh adalah kajian teoretis bagi fungsi gelombang relativistik, modifikasi dan diskretisasi program yang telah dibuat yang diperlukan untuk membuat suatu algoritma yang sesuai dan siap diterjemahkan dalam bahasa pemrograman komputer. Selanjutnya mengimplementasikan suatu teknik pemrograman untuk mendapatkan nilai yang terkait dengan pengaruh potensial OPEP dalam deuteron, yaitu berupa besaran elektromagnetik ditinjau dari fungsi gelomban relativtik

Hasil penelitian yang diperoleh di tahun pertama penelitian ini berupa kajian teoretis dan suatu program komputer yang dapat mengemukakan energi dan sifat-sifat elektromagnetika dari fungsi gelombang non-relativistik deuteron. Hasil yang diperoleh pada tahun pertama ini dijadikan acuan di tahun kedua yaitu bagi fungsi gelombang relativistik. Hasil-hasil ini telah diperoleh akan dipublikasikan di dalam seminar nasional dan jurnal nasional. Manfaat yang dapat disumbangkan dari hasil penelitian ini adalah dalam bidang medis. Energi, momen elektromagnetika dan partikel pion yang dihasilkan dari interaksi proton dan neutron dapat digunakan dalam terapi pion, yaitu terapi dalam penyembuhan penyakit kanker.

Kata-kata kunci: Fungsi Gelombang Relativistik, Elektromagnetik, Terapi Pion

BAB 1 PENDAHULUAN

Kajian tentang *electromagnetism-deuteron*, hingga saat ini masih tetap menjadi perhatian para peneliti khususnya bidang fisika inti. Dalam sudut pandang pengembangan sains, hal ini memperlihatkan aspek fisika yang belum tuntas dijabarkan meskipun sudah mulai terbuka potensi aplikasinya. Beberapa fenomena fisika menarik deuteron sedikit diuraikan sebagai berikut. Hasil penelitian yang dilaporkan [Cooke and Miller, (2002)] menunjukkan adanya dinamika pion pada deuteron. Tim peneliti yang sama yaitu [Cooke and Miller (2002)] juga mampu menyelesaikan persamaan gelombang deuteron dan energi ikatnya. Selanjutnya [Hanhart (2007)] melakukan penyelidikan tentang reaksi pion pada sistem dua nukleon. Sedangkan [Valderrama and Arriola, (2005)] menganalisa keadaan terikat deuteron pada potensial OPEP. Perhitungan besaran-besaran statik dan dinamik deuteron telah menarik perhatian banyak peneliti pada beberapa tahun terakhir ini [Korkin, (2005); Banerjee, (1998); Epelbaum, dkk, (2005)]. Selain itu, [Barbiellini, dkk (1989), Forest (1999) dan Sviratcheva, dkk (2006)] menganalisa sifat-sifat non lokal dari potensial interaksi. Adapun publikasi yang secara spesifik membahas efek elektromagnetika antara lain [Dong (2009) dan Gilman and Gross (2002)].

Pada usul penelitian ini <u>tujuan jangka panjang</u> yang dicanangkan adalah eksplorasi komprehensif karakteristik deuteron dibawah pengaruh potensial OPEP dan mengembangkan potensi aplikasi terutama di bidang medis. Sedangkan <u>tujuan jangka pendek</u> dari penelitian ini adalah mengetahui sifat-sifat elektromagnetik deuteron dari fungsi gelombang non-relativistik (tahun pertama) dan relativistik (tahun kedua) dalam potensial OPEP. Khusus pada tahun kedua, dikaji juga interaksi pion (hasil dari interaksi proton dan neutron) dengan materi (bagian tubuh manusia). Sedangkan <u>lingkup</u> penelitian ini adalah interaksi proton-neutron pada keadaan terikat potensial interaksi OPEP (*One Pion Exchange Potential* / potensial pertukaran satu-pion).

Penelitian yang diusulkan ini merupakan kelanjutan penelitian yang telah dilakukan oleh TPP sebelumnya yang telah dipublikasi, yaitu 1) bentuk interaksi proton

dan neutron yang membentuk deuteron dalam potensial lokal [R. Yosi Aprian Sari, (2011)]; 2) momen elektromagnetik statik deuteron dalam potensial lokal [R. Yosi Aprian Sari, dkk (2011)], dan 3) dinamika pertukaran partikel pada deuteron dalam potensial lokal [R. Yosi Aprian Sari, dkk (2012)]. Penelitian tentang energi dan momen elektromagnetika deuteron bagi fungsi gelombang non-relativistik juga telah dipublikasikan [R. Yosi Aprian Sari, dkk (2013) dan R. Yosi Aprian Sari (2013)] Bagian yang belum dikaji dari penelitian terdahulu berupa efek fungsi gelombang relativistik pada keelektromagnetikan deuteron yang bisa diterapkan dalam bidang medis.

Hal yang menjadi *keutamaan* pada usul penelitian ini adalah pengembangan model potensial interaksi kuat gaya inti (proton-neutron pada keadaan terikat). Penguasaan pemahaman berkenaan dengan hal ini akan membuka peluang pemanfaatan aplikasi di bidang kedokteran. Beberapa literatur yang telah disampaikan di muka masih sedikit peneliti diskusi tentang elektromagnetik deuteron. Pada usul penelitian ini, elektromagnetik deuteron pada tinjauan model partikel dalam interaksi kuat gaya inti akan dikaji secara komprehensif. Tinjauan fungsi gelombang non-relativistik maupun relativistik menambah orisialitas usul penelitian ini. Sehingga di akhir penelitian diharapkan dapat memberi kontribusi sumbangan pada cabang ilmu pengetahun terutama fisika inti yang tertuang dalam naskah kerja / makalah ilmiah.

Gaya inti (atau gaya kuat) adalah gaya antara dua atau lebih nukleon. Gaya ini bertanggung jawab atas ikatan proton dan neutron menjadi penyusun inti atom. Gaya ini dapat dipahami sebagai pertukaran meson ringan virtual, seperti pion. Kadang-kadang gaya inti disebut sebagai gaya kuat, dibandingkan dengan interaksi kuat lainnya yang saat ini dipahami sebagai akibat kromodinamika kuantum (*Quantum Chromodynamics* / QCD). Peristilahan ini muncul pada dasawarsa 1970-an saat QCD sedang dikembangkan. Sebelum masa itu gaya kuat nuklir merujuk pada potensial internukleon. Setelah model quark diverifikasi, interaksi kuat diartikan sebagai QCD.

Pendekatan mikroskopis dalam mempelajari teori struktur inti, yaitu dengan menelaah dinamika kesatuan sistem nukleon penyusunnya tersebut sebagai akibat interaksi di antara mereka.Interaksi nukleon-nukleon dalam inti dapat berupa interaksi

proton-proton, neutron-neutron maupun proton-neutron melalui suatu potensial interaksi dengan sistem pada keadaan terikat. Interaksi proton-neutron akan menghasilkan inti stabil yang paling sederhana yang disebut *deuteron*.

Deuteron merupakan inti yang paling sederhana setelah hidrogen, karena deuteron hanya memiliki satu keadaan terikat dan deuteron dihasilkan antara interaksi proton dan neutron dalam suatu potensial tertentu. Dalam interaksinya, proton dan neutron mengalami proses yang disebut *pertukaran meson* di antara mereka. Pertukaran meson diusulkan oleh Yukawa pada tahun 1935 yang dikenal sebagai *Teori Medan Meson*. Yukawa menyatakan bahwa terdapat partikel dengan parameter massa antara massa elektron dan massa nukleon yang bertanggung jawab atas adanya gaya inti. Partikel tersebut dikenal sebagai *pion*. Pion dapat bermuatan (π^+, π^-) atau netral (π^0) , ketiganya membentuk triplet isospin dengan T=1. Pion ini merupakan anggota dari kelompok partikel elementer berinteraksi kuat (hadron) yang mempunyai massa menengah dan secara kolektif disebut *meson*; pion adalah singkatan dari π -meson [**Rho and Wilkinson, (1979)**].

Empat Interaksi Pokok [Beiser, (1987)]

Interaksi	Partikel Yang Dipengaruhi	Jangkauan	Pertukaran Partikel	Aturan Universum
Kuat	Quark	$\sim 10^{-15}$ m	Gluon	Quark mengikat menjadi
	Hadron		Meson	bentuk nukleon Nukleon mengikat menjadi bentuk atomik inti
Elektromagnetik	Partikel bermuatan	∞	Foton	Penentuan struktur atom, molekul, zat padat dan zat cair; adalah faktor yang
				penting dalam jagat raya
Lemah	Quark dan Lepton	~10 ⁻¹⁷ m	Boson Madya	Transformasi menengah dari quark dan lepton; menolong dalam menentukan komposisi inti atom
Gravitasional	Semua	8	Graviton	Penemuan materi menjadi planet, bintang dan partikel

Menurut teori Yukawa, setiap nukleon terus-menerus memancarkan dan menyerap pion; transfer momentum yang menyertainya setara dengan aksi gaya. Gaya inti saling tolak pada jangkauan sangat pendek dan saling tarik pada jarak nukleon-nukleon yang agak jauh, karena jika tidak demikian, nukleon dalam inti akan menyatu,

dan salah satu kekuatan teori meson untuk gaya seperti itu ialah kedua aspek tersebut tercakup. Potensial terjadinya proses pemancaran dan penyerapan pion tersebut adalah potensial OPEP, $V_{\rm OPEP}$.[Gasiorowicz, (1974); Beiser, (1987); R. Yosi Aprian Sari, (2011)].

Interaksi inti antar penyusunnya merupakan gabungan interaksi kuat, interaksi elektromagnetik, dan interaksi lemah.Interaksi kuat penentu utama struktur, distribusi dan gerak nukleon dalam inti. Distribusi muatan, arus listrik dan momen magnet sistem nukleon akan menghasilkan medan listrik dan magnetik yang merupakan fungsi letak dan ikut mengatur struktur inti melalui interaksi elektromagnet. Distribusi muatan, arus dan momen magnet menimbulkan medan elektromagnet yang gayut ruang; medan listrik $\propto 1/r^2$ timbul dari muatan, dikenal sebagai momen ke-nol atau monokutub; medan listrik $\propto 1/r^3$ timbul dari momen pertama atau dwikutub; medan listrik $\propto 1/r^4$ timbul dari momen kedua atau caturkutub, dan seterusnya. Setiap momen multikutub magnetik orde tinggi berpeluang untuk muncul pula kecuali momen monokutub, sebab medan momen monokutub ($\propto 1/r^2$) tidak ada. Momen dwikutub magnet timbul dari arus listrik (orbital) dan spin (intrinsik). Momen multikutub terkait dengan simetri inti, dan secara langsung dapat dikaitkan dengan momentum sudut maupun paritas inti [Greiner and Maruhn, (1996), R. Yosi Aprian Sari, dkk, (2011)].

Deuteron, tersusun atas sebuah proton dan sebuah neutron, yang merupakan inti yang stabil. Sebagai sebuah atom, deuteron disebut deuterium sebagai isotop hidrogen yang memiliki kelimpahan 1.5×10^{-4} dibandingkan dengan 0.99985 hidrogen biasa. Stabilitas itu luar biasa karena neutron bebas tidak stabil dan mengalami peluruhan beta dengan waktu paruh 10.3menit. Energi ikat deuteron sebesar 2.2MeV/ c^2 [R. Yosi Aprian Sari, dkk, (2012)].

Jika neutron dalam deuteron mengalami peluruhan membentuk proton, elektron dan antineutrino, ${}_0^1n \to {}_1^1p + \beta^- + \tilde{v}$, maka energi massa gabungan dari partikel-partikel tersebut berupa massa deuteron,

$$2(938,27 \text{ MeV}/c^2) + 0.511 \text{MeV}/c^2 = 1877,05 \text{MeV}/c^2$$

Massa deuteron sebesar1875,6MeV/ c^2 , berimplikasi bahwa energi di atas keadaan dasar deuteron menjadi tidak stabil dan meluruh. Neutron bebas menghasilkan

energi sebesar $0.78 \text{MeV}/c^2$ dalam peluruhan beta, tetapi $2.2 \text{MeV}/c^2$ energi ikat deuteron mencegah terjadi peluruhan.

Kestabilan deuteron sangat penting dalam sejarah alam semesta. Dalam model Big Bang (ledakan besar) diduga bahwa dalam awal terbentuknya alam semesta ada sejumlah proton dan neutron karena energi yang tersedia jauh lebih tinggi daripada $0.78 \text{MeV}/c^2$ diperlukan untuk mengkonversi proton dan elektron menjadi neutron. Ketika suhu turun ke titik yang mana neutron tidak bisa lagi diproduksi dari proton, peluruhan neutron bebas mulai berkurang populasi mereka. Neutron-neutron yang berinteraksi dengan proton-proton membentuk deuteron yang berfungsi untuk menjaga agar tidak terjadi peluruhan lebih lanjut. Ini penting sekali untuk dipelajari karena jika neutron habis meluruh maka alam semesta sekarang ini tidak ada lagi.

<u>Manfaat</u> yang dapat disumbangkan dari hasil penelitian ini meliputi dua hal. <u>Pertama</u> dalam **bidang astrofisika**, karena diduga deuteron berperan menjaga agar neutron tidak meluruh secara terus-menerus, karena neutron dan proton merupakan unsur yang membentuk alam semesta. <u>Kedua</u> dalam **bidang kedokteran**, gas deuteron dipergunakan untuk mengukur dosimetri dalam medan neutron dalam radioterapi. Dari kedua manfaat ini, maka penguasaan pengetahuan mendalam tentang sifat-sifat fisis terutama sifat elektromagnetik deuteron sangat dibutuhkan.

Adapun *luaran* yang ditargetkan dari usul penelitian ini adalah terbangunnya kerjasama penelitian antar perguruan tinggi. Dalam hal ini antara Universitas Negeri Yogyakarta sebagai Tim Peneliti Pengusul (TPP) dengan Universitas Gadjah Mada Yogyakarta sebagai Tim Peneliti Mitra (TPM). Selebihnya berupa naskah publikasi ilmiah untuk dipresentasikan pada forum seminar nasional dan seminar internasional yang diselenggarakan di Indonesia. Naskah kerja juga akan dipublikasikan pada jurnal nasional terakreditasi.

	Jurnal IJAP UNS
Publikasi	Jurnal Sains Dasar UNY
	Jurnal Makara UI
	Semnas UNY
Seminar	Semnas BATAN
	Seminar Internasional LIPI

BAB 2

TINJAUAN PUSTAKA

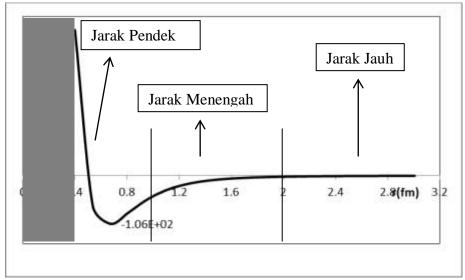
Untuk menyelidiki interaksi proton dan neutron di dalam potensial V melalui telaah sistem dua partikel, massa partikel deuteron ditampilkan sebagai massa tereduksi m^* pasangan massa proton dan massa neutron penyusun sistem sebesar $m_{\rm p}m_{\rm n}/(m_{\rm p}+m_{\rm n})$. Penyelesaian persamaan sistem dua partikel memuat penyelesaian persamaan pusat massa yang bebas dan penyelesaian gerak relatif yang memenuhi persamaan Schrödinger dengan potensial antar nukleon, $V = V(\vec{r})$, dengan penampilan pers. (1) yang setara dengan persamaan partikel tunggal dengan parameter massa m^* sebagai parameter inersia.

$$\left[-\frac{\hbar^2}{2m^*} \frac{d^2}{dr^2} + \frac{L(L+1)\hbar^2}{2m^*r^2} + V(r) \right] \chi(r) = E\chi(r)$$
 (1)

dapat ditulis sebagai

$$\widehat{H}\chi(r) = E\chi(r)$$

dengan operator Hamiltonian (\widehat{H}) berbentuk


$$\widehat{H} = -\frac{\hbar^2}{2m^*} \frac{d^2}{dr^2} + \left[\frac{L(L+1)\hbar^2}{2m^*r^2} + \widehat{V}(\vec{r}) \right]$$

Gerak yang terjadi dalam potensial interaksi $V(\vec{r})$ yang untuk gaya sentral merupakan potensial bersimetri bola $V(\vec{r})$ dalam ruang berdimensi tiga yang bergantung padar yang sama dengan besar vektor letak relatif $\hat{\vec{r}}$ dua partikel.

Interaksi nukleon-nukleon dapat menimbulkan gaya di antara mereka. Dalam atom, elektron terikat oleh potensial elektrostatik sentral yang ditimbulkan oleh proton-proton dalam inti dan antara sesama elektron. Ini berarti bahwa gaya yang dialami oleh elektron dapat dibagi menjadi dua bagian, sebagian disebabkan oleh inti dan bagian kedua timbul dari interaksi dengan elektron lain. Dalam inti, tidak ada sumber eksternal yang memberikan gaya pada nukleon tunggal sebagai hasil interaksi dengan satu partikel tunggal. Operator partikel tunggal dalam Hamiltonian inti berupa operator energi kinetik saja yang terkait dengan gerak nukleon sebagai suatu interaksi partikel

tunggal "efektif" dalam potensial interaksi inti dan dapat diambil dari nilai rata-rata interaksi antara sesama pasangan nukleon dalam inti [Eisenberg and Greiner, (1986), Wong, (1990)].

Interaksi nukleon-nukleon yang berupa interaksi proton dan neutron di bagi menjadi 3 bagian wilayah,

Gambar 2.
Potensial Interaksi Proton dan Neutron
[R. Yosi Aprian Sari, dkk (2013)]

Pada jarak $0 \le r \le r_c$ dengan $r_C = 0.4$ fm, pada daerah ini terdapat gaya tolak, berarti daerah merupakan *dinding potensial* yang tinggi tidak berhingga sehingga dengan demikian kebolehjadian untuk mendapatkan partikel (deuteron) dalam interval tersebut menjadi nol. Pada wilayah pendek $0.4 \le r \le 1$ fm, terdapat pertukaran vektor boson (meson-meson berat dan pertukaran banyak pion) yang merupakan efek dari QCD. Pada wilayah tengah terletak pada sekitar radius $1 \sim 2$ fm, yaitu terjadinya pertukaran meson skalar $(\pi, \rho, \omega, \sigma)$, dan pada wilayah ketiga yaitu pada jarak yang cukup jauh, $r \to \infty$, terdapat gaya tarik (*attractive*) sehingga kedua partikel akan bergerak saling mendekat. dan pertukaran pion sekitar daerah r > 2 fm, [**R. Yosi Aprian Sari, dkk (2013)**].

$$V_{\text{OPEP}}(r) = \frac{g_{\pi}^2}{3} (\vec{\tau}_1 \cdot \vec{\tau}_2) \left[\frac{e^{-\mu r}}{r} (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + \left(1 + \frac{3}{\mu r} + \frac{3}{(\mu r)^2} \right) \frac{e^{-\mu r}}{r} S_{12} \right]$$
(2)

dengan $\mu = \frac{1}{r_0}$, $r_0 = \frac{\hbar}{m_\pi c}$ dan $S_{12} = 3(\vec{\sigma}_1 \cdot \vec{r})(\vec{\sigma}_2 \cdot \vec{r}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2)$ yang merupakan operator tensor; g_π adalah tetapan kopling.

Definisi fungsi gelombang relativistik deuteron bergantung pada formalisasi relativistik. Dalam formulasi yang didasari pada dinamika Hamiltonian, fungsi gelombang deuteron pada kerangka yang diam identik dengan fungsi gelombang non-relativistik..

Dalam dinamika Hamiltonian relativistik, operator momentum (\vec{P}) dan operator momentum sudut total (\vec{J}) tidak bergantung pada interaksi nukleon-nukleon, sehingga Hamiltonian (\widehat{H}) dan boost (\vec{K}) yang berinteraksi. Di dasari apa yang telah dikemukakan oleh Bakamjian dan Thomas (1953) dan Foldy (1961) dalam **Forest, et.al** (1999), Hamiltonian relativistik berbentuk

$$\widehat{H}_R = \sum_i \left(\sqrt{m_i^2 + p_i^2} - m_i \right) + \sum_{i < j} \left[\widetilde{V}_{ij} + \delta V_{ij} \left(\boldsymbol{P}_{ij} \right) \right]$$
 (3)

dengan \tilde{V}_{ij} adalah potensial interaksi nukleon-nukleon dalam kerangka diam dari partikel ke i dan j (yaitu kerangka yang mana $\boldsymbol{P}_{ij} = \boldsymbol{p}_i + \boldsymbol{p}_j = 0$. Sedangkan $\delta V_{ij}(\boldsymbol{P}_{ij})$ disebut operator "interaksi boost" dan bergantung pada momentum sudut total interaksi nukleon-nukleon, dan sangat jelas sekali $V_{ij}(\boldsymbol{P}_{ij} = 0)$ akan lenyap.

Pada Hamiltonian non-relativistik (\widehat{H}_{NR}) pada persamaan (1) terdapat pendekatan energi kinetik T dan \widetilde{V}_{ij} mengabaikan interaksi boost. Dalam kasus deuteron, kerangka pusat massanya yang mana momentum $P_{ij} = 0$. Operator \widetilde{V}_{ij} memenuhi syarat bahwa deuteron dalam keadaan diam, namun pada inti A > 2, momentum total suatu pasangan nukleon-nukleon tidak nol dalam kerangka pusat massa, sehingga interaksi di antara pasangan-pasangan nukleon harus melibatkan \widetilde{V}_{ij} .

Dua bentuk efek relativistik dalam interaksi nukleon-nukleon ini adalah pertama interaksi boost $\delta V_{ij}(\boldsymbol{P}_{ij})$ menyebebkan gerak pusat massa nukleon ke i dan j dalam kerangka diam, dan kedua efek nonlokal menyebabkan gerak relatif dua nukleon dalam kerangka pusat massanya.

Interaksi boost $\delta V_{ij}({m P}_{ij})$ ditentukan dari kerangka diam potensial \tilde{V}_{ij} melalui

kovarian relativistik menurut Krajik dan Foldy (1974) dan Friar (1975) dalam **Forest,** et.al (1999). $\delta V_{ij}(\mathbf{P}_{ij})$ diekspansikan dalam pangkat $P_{ij}^2/4m^2$ diperoleh

$$\delta V(\vec{P}) = -\frac{P^2}{8m^2} \tilde{V} + \frac{i}{8m^2} \left[\vec{P} \cdot \vec{r} \vec{P} \cdot \vec{p}, \tilde{V} \right] + \frac{i}{8m^2} \left[(\vec{\sigma}_1 - \vec{\sigma}_2) \times \vec{P} \cdot \vec{p}, \tilde{V} \right]$$
(4)

Di sini, $\vec{p} = (\vec{p}_i - \vec{p}_j)/2$ merupakan operator momentum relativistik, dan $\vec{\sigma} = 2\vec{s}$ adalah matriks Pauli untuk partikel berspin 1/2.

Dua bentuk pertama dari persamaan (4) di atas ditandai sebagai δV_{ER} dan δV_{KL} , yaitu relasi momentum-energi relativistik (ER) dan kontraksi Lorentz (KL). Adapun bentuk terakhir dari persamaan (4) di atas memberikan kontribusi dari efek Presisi Thomas (PT) dan efek kuantum (EK), yang ditandai sebagai δV_{PT} dan δV_{EK} yang nilainya lebih kecil daripada dua bentuk sebelumnya.

Selain dari interaksi boost, sumber efek relativistik lain muncul dari efek non-lokal. Dengan menggunakan kerangka pusat massa dua nukleon yang mana interaksi boost lenyap, terfokus pada interaksi dua benda dalam kerangka diam. Dalam kebanyakan bentuk potensial non-relativistik, OPEP telah dihitung dengan menggunakan spinor Pauli non-relativistik. Tanpa bentuk faktor πNN , diperoleh bentuk ruang momentum sebagai

$$\tilde{V}_{\pi,NR}(\vec{q}) = -\frac{f_{\pi NN}^2}{\mu^2} \frac{\vec{\sigma}_i \cdot \vec{q} \vec{\sigma}_j \cdot \vec{q} \vec{\tau}_i \cdot \vec{\tau}_j}{\mu^2 + q^2}$$
(5)

dengan $f_{\pi NN}$ adalah konstanta kopling pion-nukleon, μ adalah massa pion, dan \overrightarrow{q} adalah transfer momentum,

$$\vec{q} = \vec{p} - \vec{p}'. \tag{6}$$

Di sini, \vec{p} dan \vec{p}' masing-masing merupakan momentum nukleon ke i mula-mula dan akhir dalam kerangka pusat massa, dan $\tilde{V}_{\pi,NR}$ adalah potensial lokal, yaitu hanya bergantung pada \vec{q} .

Sedangkan jika OPEP relativistik spinor Dirac memiliki bentuk:

$$\tilde{V}_{\pi,Rel}(\overrightarrow{\boldsymbol{p}}',\overrightarrow{\boldsymbol{p}}) = \frac{m}{\sqrt{m^2 + p'^2}} \tilde{V}_{\pi,NR}(\overrightarrow{\boldsymbol{q}}) \frac{m}{\sqrt{m^2 + p^2}}$$
(7)

Potensial ini bergantung tidak hanya pada \vec{q} tetapi juga pada \vec{p} dan \vec{p}' , yang mana menghasilkan dalam potensial non-lokal dalam konfigurasi ruang. Interaksi pada persamaan (5) tidak bergantung pada energi yang pada umumnya digunakan pada

persamaan Schrödinger. Dengan mengekspansikan akar kuadrat diperoleh koreksi $(\tilde{V}_{\pi,Rel} - \tilde{V}_{\pi,NR})$ dalam orde p^2/m^2 , yaitu orde v^2/c^2 dengan v menunjukkan kecepatan nukleon-nukleon dalam kerangka pusat massa.

Dalam **Forest, et.al** (1995) ditunjukkan bahwa relasi di antara interaksi *boost* $\delta V(\vec{P})$ dan \tilde{V}_{NR} statis tidak bergantung pada \tilde{V}_{NR} mula-mula hingga ke orde P^2/m^2 . Dengan mengekspansikan persamaan (7) diperoleh

$$\tilde{V}_{\pi,Rel}(\vec{p}',\vec{p}) = \tilde{V}_{\pi,NR}(\vec{q}) \left(1 - \frac{{p'}^2}{2m^2} - \frac{p^2}{2m^2} + \cdots\right)$$
(8)

Yang mana interaksi ini dapat dibuat lebih umum dengan pertukaran meson skalar (S) dan meson vektor (V) yang berbeda

$$\tilde{V}_{S,Rel}(\vec{p}',\vec{p}) = \tilde{V}_{S,NR}(\vec{q}) \left(1 - \frac{(\vec{p}' + \vec{p})^2}{2m^2} + \cdots \right)$$
(9)

$$\tilde{V}_{V,Rel}(\vec{p}',\vec{p}) = \tilde{V}_{V,NR}(\vec{q}) \left(1 + \frac{(\vec{p}' + \vec{p})^2}{2m^2} + \cdots \right)$$
(10)

Adapun potensial interaksi dua nukleon diungkapkan sebagai

$$\tilde{V}_{NN} = \tilde{V}_{\pi,Rel} + \tilde{V}_{Rel} \tag{11}$$

dengan \tilde{V}_{Rel} adalah selisih antara dua potensial.

Dengan demikian Hamiltonian relativistik (\widehat{H}_R) untuk sistem dua nukleon dalam kerangka pusat massa berbentuk

$$\widehat{H}_{R} = 2\sqrt{p^{2} + m^{2}} - 2m + \frac{m}{\sqrt{p'^{2} + m^{2}}} \widetilde{V}_{\pi,Rel}(\vec{q}) \frac{m}{\sqrt{p^{2} + m^{2}}} + \widetilde{V}_{Rel}$$
(12)

dengan \tilde{V}_{Rel} memiliki bentuk yang sama seperti bagian isoskalar dari potensial Argonne [Wiringa, et.al (1996)]

Penelitian ini merupakan penelitian lanjutan yang telah dilakukan, baik didanai dari DPPM Dikti (Hibah Pekerti tahun 2010), penelitian yang didanai dari DIPA Universitas (dapat dilihat di daftar pustaka di bagian belakang proposal ini) dan dana dari DPPM Dikti (Hibah Pekerti tahun 2013 tahun pertama). Pada penelitian sebelumnya, **interaksi proton dan neutron** dalam potensial tertentu telah dikaji, baik berupa analisis model interaksi maupun algoritma yang berkaitan model interaksi proton dan neutron.

BAB 3

METODE PENELITIAN

Secara garis besar, aktivitas penelitian ini dilakukan dengan dua tahapan yaitu (i) formulasi metode komputasi dan (ii) penuangan numerik dalam bahasa pemrograman komputasi. Pada tahapan formulasi metode komputasi, aktifitas penelitian diawali dengan penentuan syarat batas berlakunya potensial OPEP. Kemudian dilakukan analisis sifat-sifat elektromagnetika deuteron ditinjau dari fungsi gelombang relativistik. Langkah berikutnya penuangan metode komputasi numerik dalam program komputer untuk potensial OPEP. Sebelum dilakukan perhitungan secara komputerisasi, metode komputasi numerik diujicobakan kestabilan program terhadap syarat batas-syarat batas yang dimasukan. Hal ini penting dilakukan agar hasil nilai perhitungan secara komputer bukan merupakan sekumpulan data tanpa makna fisis. Selain itu, prosedur ini juga menjadi klarifikasi syarat batas berlakunya parameter fisis yang telah dituangkan dalam numerik.

Interaksi proton dan neutron dalam suatu potensial yang dikenal sebagai potensial OPEP, $V_{\rm OPEP}$, mengandung bentuk potensial pertukaran meson skalar, persamaan (9) dan pertukaran meson vektor, persamaan (10). Kedua persamaan ini dimasukkan ke dalam persamaan Hamiltonian, persamaan (12), sehingga diperoleh suatu bentuk grafik dan nilai yang mencerminkan efek relativistik fungsi gelombang deuteron.

Persamaan diferensial deuteron ini tidak dapat diselesaikan secara analitik, dan hanya dapat diselesaikan melalui komputasi numerik, yaitu dengan metode Masalah Nilai Batas (MNB) lewat Metode Selisih Hingga (MSH), dengan terlebih dahulu mengubah persamaan differensial menjadi persamaan aljabar, dalam sistem persamaan swanilai yang linear yang berlaku dalam interval $a \le r \le b$ dengan syarat batas tertentu.

Tahapan selanjutnya adalah evaluasi pengaruh efek relativistik pada elektromagnetik deuteron. Secara umum, prosedur sama dengan tahapan sebelumnya, namun hanya dengan penyesuaian syarat batas.

Target/Indikator keberhasilan

Hasil kerja yang diharapkan dapat diperoleh dari penelitian ini meliputi :

- Diperoleh algoritma hasil analisis permasalahan, termasuk penjabaran rumus dan diskretisasi bagi semua persamaan diferensial, ungkapan integral serta fungsional.
- 2. Source code dan algoritma numerik yang terkait dengan pemrograman paralel.
- 3. Keluaran program (dengan tekhnik pemrograman paralel) yang berupa komputasi numerik dengan penyajian berupa file data dan grafik sesuai dengan parameter fisis yang diberikan.

<u>Indikator keberhasilan</u> dari penelitian ini yang tertuang pada pernyataan di atas secara fisik akan menghasilkan *sekuen* data eksperimen *kredibel* sehingga dapat diwujudkan berupa publikasi ilmiah pada seminar internasional dan seminar nasional atau jurnal nasional pada setiap akhir tahun penelitian.

BAB 4
BIAYA DAN JADWAL PENELITIAN

4.1 Anggaran Biaya

No	Jenis Pengeluaran	Biaya yang Diusulkan (Rp)				
110	Jems rengeluaran	Tahun I	Tahun II			
1	Gaji dan upah (maks 30%)	22.800.000	22.800.000			
2	Bahan habis pakai dan peralatan (30-40%)	39.700.000	38.700.000			
3	Perjalanan (15-25%)	24.400.000	24.400.000			
4	Lain-lain (Maks. 15%)	13.100.000	14.100.000			
	Jumlah	100.000.000	100.000.000			

4.2 Jadwal Penelitian

Jadwal kerja penelitian tahun kedua direncanakan sebagai berikut :

No	Jenis Kegiatan		Tahun I Tahun II																		
		1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
1.	Studi pustaka dan konsultasi TPP ke TPM																				
2.	Persiapan sarana & prasarana di tempat TPP dan TPM																				
3.	Kajian masalah fisika & pembuatan algoritmanya																				
4.	Pembuatan source code untuk algoritma yang telah dibuat																				
5.	Pengolahan data & analisa hasil																				
6.	Pembuatan laporan																				

Pada tahun pertama penelitian, pada periode *tiga bulan pertama* direncanakan kegiatan studi literatur / pustaka guna pemecahan permasalahan lebih *fokus* dan *dalam*. Kegiatan ini dilakukan baik secara terpisah sendiri-sendiri di masing-masing di TPP dan di TPM (Fisika UGM dan Fisika UNY) ataupun juga secara bersama-sama dalam

pertemuan kedua tim peneliti. Tahapan ini juga mengkaji sarana dan prasarana yang diperlukan baik di TPP maupun TPM. Komunikasi antar TPP dan TPM dilakukan melalui media ITC yaitu internet / email maupun komunikasi secara langsung. Periode waktu *enam bulan berikutnya* semua anggota TPP bersama-sama dengan TPM melakukan penjabaran metode numerik dan model fisika yang telah ditentukan. Lokasi aktivitas ini diselenggarakan di TPM. Tahapan periode ini merupakan inti aktifitas dari penelitian yang diusulkan. Kajian masalah fisika, syarat batas, penentuan *numerical grid computation* yang tertuang dalam algoritma dan *source code*-nya dijabarkan dan dipastikan sudah dapat bekerja sesuai rancangan. Selanjutnya pada *empat bulan terakhir* masa penelitian tahun pertama, semua anggota TPP kembali ke tempat masingmasing dan menyelesaikan proses pengolahan data, analisa hasil dan pembuatan laporan penelitian. Pada masa ini, hubungan dan diskusi antar tim peneliti dilakukan melalui internet dan seminggu sekali direncanakan pertemuan untuk diskusi.

BAB 5

PELAKSANAAN KERJASAMA PENELITIAN

Pertimbangan utama TPP memilih Jurusan Fisika UGM sebagai TPM pada penelitian ini didasarkan pada 2 pertimbangan yaitu (i) *kompetensi* TPM di bidang fisika komputasi dan (ii) *fasilitas* Laboratorium Komputasi Fisika.

Kompetensi TPM di bidang Fisika Komputasi seperti yang terungkap pada daftar riwayat hidup TPM baik ketua maupun anggota. Pada kajian Fisika Komputasi, Ketua TPM concern dengan aplikasi fisika, yaitu laser. Sedangkan anggota TPM sangat mahir dalam pemrograman komputer. Berkenaan dengan fasilitas, laboratorium Komputasi Fisika TPM tersedia sarana komputer yang sangat mendukung terlaksananya penelitian ini. Spesifikasi komputer yang terdapat di TPM adalah *high performance computing* Xeon x5650 2 CPU, dengan jumlah core 12 physical core dan 24 logical core dan 1 front end yang terdiri dari computing note. Perangkat komputer ini terdiri dari 5 unit PC dengan spesifikasi RAM 12 GB, network 10 Gbyte. Jaringan antar komputer dihubungkan melalui kartu Ethernet jenis NE2000 dengan waktu transfer 100/10 Mb/s. Sistem operasi yang digunakan adalah LINUX. Fasilitas lain bahasa pemrograman tingkat tinggi Fortran-77/FORTRAN-90, C/C++, serta paket aljabar numerik seperti Mathematica, MAPLE dan paket library numerik yang lain.

Pelaksanaan riset akan dilaksanakan di Laboratorium Komputasi Jurusan Fisika FMIPA UGM, dan Laboratorium Komputasi Fisika Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta. Pertimbangan pelaksanaan riset di dua laboratorium ini dilakukan dengan alasan perangkat komputer penunjang di Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta kurang memadai. Sedangkan perangkat komputasi penunjang di perguruan tinggi mitra sudah mencukupi dan sudah cukup lama digunakan dalam penelitian komputasi. Perangkat keras dan perangkat lunak di perguruan tinggi mitra yang tersedia telah dirancang mulai awal tahun 1998 untuk memenuhi kebutuhan anggota Kelompok Fisika Komputasi dalam beberapa topik riset yang terkait dengan masalah fisika zat mampat.

Mengingat keterbatasan sarana dan prasarana di tempat TPP (Fisika UNY), maka hubungan kerjasama ini akan dapat ditingkatkan melalui penyelesaian proyek penelitian seperti yang diusulkan ini. Selain itu, TPP berasal dari perguruan tinggi yang berbeda yaitu Universitas Negeri Yogyakarta. Melalui proyek penelitian ini diharapkan akan terbentuk jaringan kerjasama penelitian yang lebih luas antar institusi pendidikan tinggi yang sedang berkembang.

Adapun hak yang dimiliki oleh TPP adalah memperoleh bimbingan intensif dari TPM, menggunakan segala fasilitas penunjang yang dimiliki oleh TPM dan bertanggung jawab terhadap penyelesaian laporan penelitian pada setiap akhir tahun penelitian. Sedangkan kewajiban bagi TPM adalah memberikan bimbingan yang dibutuhkan oleh TPP serta berhak untuk mendorong agar segera terselesaikannya proyek yang sedang berjalan.

DAFTAR PUSTAKA

- Banerjee, M. K. (1998). Relativity Damps OPEP in Nuclear Matter. *Acta Phys. Polon.B29* 2509-2518
- **Barbiellili, B. and T. Jarl**borg. (1989). A Simple Approach Towards Non Local Potentials: Theory and Application. *J. Phys. Condens. Matter***1** 8865-8876
- Beiser, A, (1987), Concept of Modern Physics, McGraw Hill Inc., Singapore
- Cooke, J. R. and G. A. Miller. (2002). Deuteron binding energies and form factors from light front field theory. *Phys.Rev.* C66 (2002) 034002
- **Cooke, J. R. and G. A. Miller**.(2002). Pion-only, chiral light-front model of the deuteron. *Phys. Rev.* C65 067001
- **Dong Y. B.** (2009) Estimate of the two-photon exchange effect on deuteron electromagnetic form factors, Phys.Rev.C80:025208,2009
- **Eisenberg, J.M., and W. Greiner**, (1986), *Nuclear Theory; Microscopic Theory of The Nucleus*, North-Holland Publishing Company, Amsterdam, Netherlands.
- **Epelbaum, E., W. Glöckle, Ulf-G. Meißner**,(2005), The two–nucleon system at next-to-next-to-next-to-leading order, *Phys. Rev. A747*, *362-464*
- Forest, J.L, V. R. Pandharipande, and J. L. Friar, (1995) Relativistic nuclear Hamiltonians, *Phys. Rev. C* 52, 568 (1995)
- Forest, J.L., V.R. Pandharipande, and A. Arriaga, (1999) Quantum Monte Carlo Studies of Relativistic Effects in Light Nuclei, *Phys. Rev. C60 014002*
- **Forest, J.L.**, (2000), Effects of Nonlocal One-Pion-Exchange Potential in Deuteron, *Phys. Rev C61*, 034007
- Gasiorowicz, (2003), *Quantum Physics* 3rded, John Wiley and Sons, Inc., New York, USA.
- **Gilman, R. and F. Gross**(2002) Electromagnetic structure of the deuteron *J.Phys.G28:R37-R116,2002*
- Greiner, W. and J. A. Maruhn. (1996). Nuclear Models. Springer: Heidelberg
- Hanhart, C., (2007), Pion Reactions on Two-Nucleon Systems. arXiv:nucl-th/0703028v1
- **Korkin, R. V.** (2005). P and T odd effects in deuteron in the Reid potential. http://arxiv.org/abs/nucl-th/0504078v1
- **R. Yosi Aprian Sari,** (2011) "Sistem Dua Nukleon; Deuteron sebagai Sistem Terikat (p, n) pada Potensial Lokal" Jurnal Media Fisika, Vol 10 / No 2 / Mei 2011, ISSN: 1412-5676.
- **R. Yosi Aprian Sari, Supardi, Agung BSU, Arief Hermanto** (2011) Momen Elektromagnetik Statik Deuteron Pada Dinamika Pertukaran Partikel Dalam Potensial Lokal Reid, *Prosiding Seminar Nasional Ke-17 TKPFN Yogyakarta*, 01 Oktober 2011, http://www.batan.go.id/ptrkn/file/tkpfn17/09.pdf
- **R. Yosi Aprian Sari**, Supardi. Agung BSU, Arief Hermanto (2012) "Dinamika Pertukaran Partikel Pada Interaksi Nukleon-Nukleon dalam Potensial Lokal" Journal Indonesian Journal of Applied Physics (IJAP) Vol 02 / No 1 / April 2012, ISSN: 2089-0133, http://ijap.mipa.uns.ac.id
- **R. Yosi Aprian Sari**, Denny Darmawan, Agung BSU, Arief Hermanto (2013) "Fungsi Gelombang Non-Relativistik Deuteron Dalam Potensial Pertukaran Satu Pion" Jurnal

- Berkala Fisika Indonesia (BFI) UAD Vol.05 / Nomor 02 / Juli 2013, http://journal.uad.ac.id/index.php/BFI
- **R. Yosi Aprian Sari** (2013) "Keadaan Dasar Deuteron; Tinjauan Momen Elektromagnetik Dari Fungsi Gelombang Non-Relativistik" *Prosiding Seminar Nasional Fisika Pekan Ilmiah Fisika XVI MIPA UNY*, 26 Oktober 2013, http://www.himafisikauny.com
- **Rho, M., and D. Wilkinson,**(1979), *Mesons in Nuclei*, North-Holland Publishing Company, Amsterdam, Netherlands.
- **Sviratcheva, K. D, J. P. Draayer, and J. P. Vary**. (2006). Realistic Two-bodyInteractions in Many-nucleon Systems: Correlated Motion beyond Single-particleBehavior. *SLAC-PUB-11903 June 2006*
- **Valderraman, M. P. and E. R. Arriola.** (2005). Renormalization of the Deuteron with One Pion Exchange. *Phys. Rev.* C72:054002
- Wiringa, R.B., V. G. J. Stoks, R. Schiavilla (1995) Accurate nucleon-nucleon potential with charge-independence breaking, *Phys. Rev. C* 51, 38–51
- Wong, S.S.M., (1990). *Introductory Nuclear Physics*, Prentice Hall: New Jersey

LAMPIRAN-LAMPIRAN

Lampiran 1:

ANGGARAN PENELITIAN

	1. HONOR						
TPP							
Honor	Honor/jam (Rp)	Waktu	Minggu	Honor per Tahun (Rp)			
		(Jam/minggu)		Tahun 1	Tahun 2		
Ketua TPP	50.000	3	4	6.000.000	6.000.000		
Anggota TPP	50.000	3	4	6.000.000	6.000.000		
TPM			ı				
Honor	Honor/bul	an	Bulan	Honor per	<u> </u>		
				Tahun 1	Tahun 2		
Ketua TPM	1.000.000)	6	6.000.000	6.000.000		
Anggota TPM	800.000	GLIDAG	6	4.800.000	4.800.000		
	2 DED 41 4 (E4 N. D.		OTAL (Rp)	22.800.000	22.800.000		
	2. PERALATAN PI	ENUNJANG		TT D	1.4		
Matarial	Iatifil.aai Damalaaian	Wa.titaa	Harga	Harga Po			
Material	Justifikasi Pemakaian	Kuantitas	Satuan	Penur Tahun 1	ıjang Tahun 2		
Riava operacional	di TPP (Fisika UNY)		(Rp)	Tanun 1	1 anun 2		
1. Biaya	a. Procesor Intel Quad						
peningkatan	Core i3 2330	2	750.000	1.500.000			
kecepatan	b. Intel Processor Core						
komputer	[I5-2310] Quad Core,	. 2	2.000.000		4.000.000		
1	2.9 Ghz						
	c. Motherboard Intel	2	500,000	1 000 000	1 000 000		
	Socket LGA1155	2	500.000	1.000.000	1.000.000		
	d.RAM Crucial						
	Memory PC 2x 2GB	2	500.000	1.000.000	1.000.000		
	DDR3 PC-12800						
2. Biaya	a. Flash Disk 16 GB	5	125.000	625.000	625.000		
menambah	Kingston		120.000	022.000	023.000		
media	b. Harddisk Internal		7 00000	4 000 000			
penyimpanan	Seagate Momentus	2	500.000	1.000.000	1.000.000		
	500GB						
	c. Harddisk External	2	500.000	1.000.000	1.000.000		
	Seagate 500GB d.DVD Writer Samsung	g 2	300.000	600.000	600.000		
	e.CD RW kosong	55	5000	275.000	275.000		
3. Biaya	a. Ethernet Switch Hub	33		273.000	273.000		
pembuatan	24 port	1	500.000	500.000	500.000		
system	b. Kartu jaringan (LAN	4	100.000	400.000	400.000		
Бубст	o.ixaita jaimgan (LAIV	1 7	100.000	+00.000	+00.000		

jaringan	C	ard) TP Link				
	c. K	label jaringan +	2	400.000	800.000	800.000
		onector	<u> </u>	400.000	000.000	000.000
		martfren USB				4 700 000
		Iodem Rev.B	2	750.000		1.500.000
4. Biaya		CE81B] INUX OpenSuse	1	500.000	500.000	500.000
pengadaan		•				
software		INUX Fedora	1	500.000	500.000	500.000
5. Biaya		ewa internet	100	5.000	500.000	500.000
komunikasi		uku tentang LINUX	1 buah	100.000	100.000	100.000
dan pencarian		uku jaringan INUX	1 buah	100.000	100.000	100.000
referensi		uku pemrograman arallel	1 buah	100.000	100.000	100.000
	2:	D-LINK DSL- 542B/E - Modem able	1 buah	250.000	250.000	250.000
		angganan internet G	6 bulan	200.000	1.200.000	1.200.000
•		SUB TO	TAL (Rp)	11.950.000	15.950.000	
	3.	BAHAN HABIS PA	KAI			
		Justifikasi		Harga	Biaya Pe	r Tahun
Material		Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Biaya Pe Tahun 1	r Tahun Tahun 2
Material 1. Toner printer warna			Kuantitas 2	Satuan	•	
1. Toner printer		Pemakaian		Satuan (Rp)	Tahun 1	Tahun 2
 Toner printer warna Toner printer 		Pemakaian HP Color Toner	2	Satuan (Rp) 500.000	Tahun 1 1.000.000	Tahun 2
 Toner printer warna Toner printer hitam-putih 		Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto	5	Satuan (Rp) 500.000 300.000	Tahun 1 1.000.000 1.500.000	Tahun 2 1.000.000 1.500.000
 Toner printer warna Toner printer hitam-putih Kertas HVS TPM 		Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto 80 gr	2 5 5	Satuan (Rp) 500.000 300.000 50.000 Harga	Tahun 1 1.000.000 1.500.000	Tahun 2 1.000.000 1.500.000 250.000
 Toner printer warna Toner printer hitam-putih Kertas HVS 		Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto	5	Satuan (Rp) 500.000 300.000 50.000	Tahun 1 1.000.000 1.500.000 250.000	Tahun 2 1.000.000 1.500.000 250.000
 Toner printer warna Toner printer hitam-putih Kertas HVS TPM 		Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto 80 gr	2 5 5	Satuan (Rp) 500.000 300.000 50.000 Harga Satuan	Tahun 1 1.000.000 1.500.000 250.000 Biaya Pe Tahun 1 25.000.000	Tahun 2 1.000.000 1.500.000 250.000 r Tahun Tahun 2 20.000.000
1. Toner printer warna 2. Toner printer hitam-putih 3. Kertas HVS TPM Kegiatan Bench Fee		Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto 80 gr Justifikasi	2 5 5 Kuantitas	Satuan (Rp) 500.000 300.000 50.000 Harga Satuan	Tahun 1 1.000.000 1.500.000 250.000 Biaya Pe Tahun 1 25.000.000 27.750.000	Tahun 2 1.000.000 1.500.000 250.000 r Tahun Tahun 2 20.000.000 22.750.000
 Toner printer warna Toner printer hitam-putih Kertas HVS TPM Kegiatan 		Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto 80 gr Justifikasi	2 5 5 Kuantitas	Satuan (Rp) 500.000 300.000 50.000 Harga Satuan (Rp)	Tahun 1 1.000.000 1.500.000 250.000 Biaya Pe Tahun 1 25.000.000	Tahun 2 1.000.000 1.500.000 250.000 r Tahun Tahun 2 20.000.000
1. Toner printer warna 2. Toner printer hitam-putih 3. Kertas HVS TPM Kegiatan Bench Fee SUB TOTAL OF	PER 4.	Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto 80 gr Justifikasi	2 5 5 Kuantitas	Satuan (Rp) 500.000 300.000 50.000 Harga Satuan (Rp)	Tahun 1 1.000.000 1.500.000 250.000 Biaya Pe Tahun 1 25.000.000 27.750.000	Tahun 2 1.000.000 1.500.000 250.000 r Tahun Tahun 2 20.000.000 22.750.000
1. Toner printer warna 2. Toner printer hitam-putih 3. Kertas HVS TPM Kegiatan Bench Fee		Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto 80 gr Justifikasi	2 5 5 Kuantitas	Satuan (Rp) 500.000 300.000 50.000 Harga Satuan (Rp)	Tahun 1 1.000.000 1.500.000 250.000 Biaya Pe Tahun 1 25.000.000 27.750.000 39.700.000	Tahun 2 1.000.000 1.500.000 250.000 r Tahun Tahun 2 20.000.000 22.750.000 38.700.000
1. Toner printer warna 2. Toner printer hitam-putih 3. Kertas HVS TPM Kegiatan Bench Fee SUB TOTAL OF		Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto 80 gr Justifikasi	2 5 5 Kuantitas	Satuan (Rp) 500.000 300.000 50.000 Harga Satuan (Rp) TAL (Rp) Harga Satuan	Tahun 1 1.000.000 1.500.000 250.000 Biaya Pe Tahun 1 25.000.000 27.750.000	Tahun 2 1.000.000 1.500.000 250.000 r Tahun Tahun 2 20.000.000 22.750.000 38.700.000
1. Toner printer warna 2. Toner printer hitam-putih 3. Kertas HVS TPM Kegiatan Bench Fee SUB TOTAL OF	4.	Pemakaian HP Color Toner HP Black Toner Bola Dunia kuarto 80 gr Justifikasi ASIONAL PERJALANAN Justifikasi	2 5 5 Kuantitas 1 SUB TO	Satuan (Rp) 500.000 300.000 50.000 Harga Satuan (Rp) OTAL (Rp)	Tahun 1 1.000.000 1.500.000 250.000 Biaya Pe Tahun 1 25.000.000 27.750.000 39.700.000 Biaya Pe	Tahun 2 1.000.000 1.500.000 250.000 r Tahun Tahun 2 20.000.000 22.750.000 38.700.000 r Tahun

ke UGM	b.Biaya hidup	10 bulan	1.500.000	15.000.000	15.000.000
Perjalanan UNY ke ITB	Studi literasi	1	1.500.000	1.500.000	1.500.000
Perjalanan UNY ke UI	Studi literasi	1	2.000.000	2.000.000	2.000.000
TPM					
	Justifikasi		Harga	Biaya Pe	r Tahun
Material	Pemakaian	Kuantitas	Satuan (Rp)	Tahun 1	Tahun 2
Perjalanan dari	a.Perjalanan (pp)	2	200.000	400.000	400.000
UGM ke UNY	b.Akomodasi	7	500.000	3.500.000	3.500.000
		SUB TO	TAL (Rp)	24.400.000	24.400.000
5.	LAIN-LAIN				
TPP					
			Harga	Biaya Pe	r Tahun
Kegiatan	Justifikasi	Kuantitas	Satuan (Rp)	Tahun 1	Tahun 2
	Jurnal IJAP UNS	1	1.500.000	1.500.000	1.500.000
D 1111	Jurnal Saintek UNY	1	500.000	500.000	500.000
Publikasi	Jurnal Makara UI	1	2.000.000	2.000.000	2.000.000
	Jurnal Internasional IJBAS	1	5.000.000	5.000.000	5.000.000
	Semnas UNY	1	600.000	600.000	600.000
Seminar	Semnas BATAN	1	1.000.000		1.000.000
Seminar	Seminar Internasional LIPI	1	2.500.000	2.500.000	2.500.000
T	Laporan kemajuan	1	500.000	500.000	500.000
Laporan	Laporan akhir	1	500.000	500.000	500.000
		SUB TO	OTAL (Rp)	13.100.000	14.100.000
TOTAL ANGGAR	AN YANG DIPERLU	KAN SETIA	P TAHUN	Tahun 1	Tahun 2
			(Rp)	100.000.000	100.000.000
TOTAL ANGGARA	N YANG DIPERLUI	KAN SELUR	UH TAHUN	N (Rp)	200.000.000

Lampiran 2.

Dukungan Sarana dan Prasarana Penelitian

Pelaksanaan riset akan dilaksanakan di Laboratorium Komputasi Jurusan Fisika FMIPA UGM, dan Laboratorium Komputasi Fisika Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta. Pertimbangan pelaksanaan riset di dua laboratorium ini dilakukan dengan alasan perangkat komputer penunjang di Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta kurang memadai. Sedangkan perangkat komputasi penunjang di perguruan tinggi mitra sudah mencukupi dan sudah cukup lama digunakan dalam penelitian komputasi. Perangkat keras dan perangkat lunak di perguruan tinggi mitra yang tersedia telah dirancang mulai awal tahun 1998 untuk memenuhi kebutuhan anggota Kelompok Fisika Komputasi dalam beberapa topik riset yang terkait dengan masalah fisika zat mampat. Jenis komputer yang digunakan dalam laboratorium komputasi berupa high performance computing Xeon x5650 2 CPU, dengan jumlah core: 12 physical core dan 24 logical core dan 1 front end yang terdiri dari computing note. Perlengkapan lain dalam komputasi terdiri dari 5 unit PC dengan spesifikasi RAM 12 GB, network 10 Gbyte. Jaringan antar komputer dihubungkan melalui kartu Ethernet jenis NE2000 dengan waktu transfer 100/10 Mb/s. Sistem operasi yang digunakan adalah LINUX, dilengkapi dengan bahasa pemrograman tingkat tinggi Fortran-77/FORTRAN-90, C/C++, serta paket aljabar numerik seperti Mathematica, MAPLE dan paket library numerik yang lain.

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama / NIDN	Instansi Asal	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1.	R. Yosi Aprian Sari, M.Si / 0007047308	Fisika UNY	Fisika Komputasi	12 jam / minggu	Bertanggung jawab terhadap seluruh proses penelitian Mengkoordinasikan pelaksanaan penelitian Menjelaskan konsep dan strategi penyelesaian penelitian Mempresentasikan hasil penelitian
2.	Denny Darmawan, M.Sc / 0002127901	Fisika UNY	Fisika Komputasi	12 jam / minggu	Membantu ketua penelitian dalam melaksanakan penelitian Membantu menyelesaikan persamaan, pembuatan source code, pengambilan data dan analisis data

Lampiran 4.

Biodata Ketua

A. Identitas Diri

1.	Nama Lengkap (dengan gelar)	R. Yosi Aprian Sari, M.S	li	
2.	Jenis Kelamin	L	, <u> </u>	
3.	Jabatan Fungsional	Lektor		
4.	NIP	19730407 200604 1 001		
5.	NIDN	0007047308		
6.	Tempat dan Tanggal LAhir	Bengkulu, 7 April 1973		
7.	E-mail	ryosia@uny.ac.id		
8.	Nomor Telepon / HP	081578010933	T 7	
9.	Alamat Kantor	Jurdik Fisika FMIPA UN	IY	
10.	Nomor Telepon	0274-586168 pswt 365	1	
11.	Lulusan yang telah dihasilkan	S1 = 21 orang	S2 = 0	S3 = 0
12.	Mata Kuliah yang Diampu	Fisika Komputasi		
		Praktikum Fisika Kompu	tasi	
		Fisika Zat Padat Lanjut		
		Fisika Atom		
		Fisika Modern		
		Fisika Zat Padat		
		Praktikum Fisika Dasar I	I	
		Praktikum Fisika Dasar		
		Praktikum Fisika Dasar		
		Praktikum Fisika Dasar I		
		Fisika Kuantum I		
		Statistik		
		Fisika Kuantum II		
		Fisika Komputasi Lanjut		
		Praktikum Fisika Kompu		
		Analisa Numerik Lanjut	<u>J</u>	
		Matematika untuk Fisika	I	
		Teori Relativitas Khusus		
		Pengantar Fisika Kuantu		
		1 5115airear 1 1511ka 1kaarita		

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama Perguruan Tinggi	UGM	UGM	
Bidang Ilmu	Fisika	Fisika	
Tahun Masuk - Lulus	1992 - 2000	2002 - 2005	
Judul Skripsi / Tesis /	Swafungsi dan Observabel	Sifat-Sifat Termodinamika	
Disertasi	Deuteron; Aspek Teoretis	Sistem Paraboson Orde	
	dan Komputasi	Dua	

Nama Pembimbing /	Prof. Dr. Muslim	Dr. Mirza Satriawan	
Promotor	Dr. Arief Hermanto	Dr. Pekik Nurwantoro	

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

	l	llaman Penelitian Dalam 5 Tahun Terakh	Pendar	naan
No	Tahun	Judul Penelitian	Sumber	Jumlah (Rp – Juta)
1	2013	Elektromagnetik Deuteron; Model Pertukaran Partikel Dalam Interaksi Kuat Gaya Inti Ditinjau Dari Fungsi Gelombang Non-Relativistik Dan Relativistik Dalam Patansial Open	DPPM (Hibah Pekerti)	75
2	2012	Relativistik Dalam Potensial Opep Pengembangan Kerangka Berpikir Rasional Dalam Membangun Karakter Fisikawan Pada Mata Kuliah Pengantar Fisika Kuantum (Introduction to Quantum Physics) Bagi Mahasiswa Pendidikan Kelas Internasional (anggota)	DIPA UNY	10
3	2011	Dinamika Pertukaran Partikel Dalam Interaksi Nukleon-Nukleon (ketua)	DPPM (Hibah Pekerti)	64
4	2011	Back To The Future; Pembelajaran Visioner Pada Mata Kuliah Teori Relativitas Khusus Dalam Upaya Meningkatkan Daya Abstraksi Mahasiswa (ketua)	DIPA UNY	4
5	2010	Implementasi Paradigma Fisika Melalui Sistem Kontrak Nilaidalam Perkuliahan Fisika Kuantum I dalam Membangun Motivasi dan Karakter Mahasiswa (anggota)	DIPA UNY	5
6	2010	Dinamika Kuantum Interaksi Dua Partikel;Telaah Interaksi Kuat Gaya Inti	DIPA UNY	4
7	2010	Edutainment For Children; Membangun Karakter Anak Usia Sekolah Dasar Melalui Pendidikan Sains(ketua)	DIPA UNY	5
8	2010	Simulasi Gerak Planet dalam Tata Surya (anggota)	DIPA UNY	5
9	2009	Simulasi Komputer Pengaruh Efek Proksimitas Pada Konfigurasi Vortex Superkonduktor (anggota)	DPPM (Hibah Pekerti Tahun ke-2)	60
10	2008	Simulasi Komputer Pengaruh Efek Proksimitas Pada Konfigurasi Vortex Superkonduktor (anggota)	DPPM (Hibah Pekerti Tahun ke-1)	62,1

D. Pengalaman Pengabdian kepada Masyarakat dalam 5 Tahun Terakhir

		Judul Dangahdian kang Ja	Pend	anaan
No	Tahun	Judul Pengabdian kepada Masyarakat	Sumber	Jumlah (Rp – Juta)
1.	2012	Klinik Sains OSN MGMP Fisika Kab.	MGMP Kab.	
		Gunung Kidul" di SMAN 2 Wonosari pada 17 November 2012.	Gunung Kidul	
2.	2012	Gebyar PK-LK PLB Dinas Pendidikan DIY" di Lapangan Pengasih, Kulon Progo pada 23 Mei 2012	Disdikpora DIY	
3.	2011	Pendampingan / Pembimbing OSN SMPN 1 Manyaran, Wonogiri di SMPN 1 Manyaran Wonogiri pada 9 November 2011.	SMPN 1 Manyaran	
4.	2011	Pemberdayaan Guru SMP Kab. Sleman Melalui Penguasaan <i>Software Open</i> <i>Office</i> di FMIPA UNY pada 23 – 24 September 2011.	DIPA UNY	3
5.	2010	Bedah dan Persiapan Menghadapi UN 2011 di SMA 3 Bantul"	SMA 3 Bantul	
6.	2010	Edutainment For Children; Pengenalan Sains Bagi Anak Usia Sekolah Dasar Sebagai Alternatif Pengganti Kegiatan Menonton TV Di Sore Hari'	DIPA UNY	4
7.	2009	Peningkatan Minat Siswa Untuk Melanjutkan Pendidikan Ke Perguruan Tinggi	SMAN 1 Goden	
8.	2009	Pendalam Materi Mekanika Kuantum pada kegiatan MGMP Fisika SMA/MA Kab. Bantul.	MGMP Fisika Kab. Bantul	
9.	2009	Penyusunan Kurikulum Tingkat Satuan Pendidikan	DIPA UNY	2
10.	2008	Pembinaan Siswa-Siswa SMA 1 Kalasan dalam Menghadapi Olimpiade Sains 2009	SMAN 1 Kalasan	

E. Publikasi Artikel Ilmiah Dalam Jurnal Dalam 5 Tahun Terakhir

No	Judul Artikel Ilmiah	Nama Jurnal	Volume / Nomor / Tahun
1	Fungsi Gelombang Non-Relativistik	Jurnal BFI UAD	Vol 05 / No. 2
	Deuteron Dalam Potensial Pertukaran	ISSN: 2085-0409	/ Juli 2013
	Satu Pion		
2	Dinamika Pertukaran Partikel Pada	Journal Indonesian Journal	Vol 02 / No 1 /

	Interaksi Nukleon-Nukleon dalam	of Applied Physics (IJAP)	April 2012
	Potensial Lokal	http://ijap.mipa.uns.ac.id.	
		ISSN: 2089-0133	
3	Sistem Dua Nukleon; Deuteron	Jurnal Media Fisika	Vol 10 / No 2 /
	sebagai Sistem Terikat (p, n) pada	ISSN: 1412-5676.	Mei 2011
	Potensial Lokal		
4	Simulasi Komputer Pengaruh Efek	Jurnal Media Fisika	Vol. 9 No. 1
	Proksimitas Pada Vortex	ISSN: 1412-5676	Februari 2010
	Superkonduktor Berlubang		
5	Simulasi Komputer Pengaruh Efek	Jurnal Media Fisika	
	Proksimitas Pada Vortex	ISSN: 1412-5676	
	Superkonduktor		
6	Pengelolaan Limbah Industri	Jurnal INOTEKS LPM	Volume 12,
	Penyepuhan Logam Perak	UNY	Nomor 2,
	(Elektroplating) Di Lingkungan	ISSN: 1411-3554.	Agustus 2008,
	Pengrajin Perak Kecamatan Kotagede		
7	Perhitungan Besaran-Besaran Fisis	Jurnal Pendidikan	Edisi 1, Tahun
	Statis dan Pertukaran Pion Tunggal	Matematika dan Sains	XII, Juni 2007
	dalam Interaksi Proton-Neutron pada	(JPMS) UNY	
	Potensial Reid	ISSN 1410-1866	

F. Pemakalah Seminar Ilmiah dalam 5 Tahun Terakhir

No	Nama Pertemuan Ilmiah / Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
1	Seminar Nasional Pekan	Keadaan Dasar Deuteron; Tinjauan	Yogyakarta,
	Ilmiah Fisika XVI	Momen Elektromagnetik Dari Fungsi	26 Oktober
	dilaksanakan oleh	Gelombang Non-Relativistik.	2013
	Himpunan Mahasiswa		
	Fisika (HIMAFIS) UNY		
2	Seminar Nasional ke-17 Teknologi dan	Momen Elektromagnetik Statik Deuteron Pada Dinamika Pertukaran	Yogyakarta, 1 Oktober 2011
	Keselamatan PLTN Serta	Partikel Dalam Potensial Lokal Reid	
	Fasilitas Nuklir pada	http://www.batan.go.id/ptrkn/file/tkpfn1	
	tanggal dimuat dalam	<u>7/09.pdf</u> .	
	Prosiding ISSN: 0854-		
	2910,		
3	Seminar Nasional	Fungsi Partisi Kanonik Lengkap	2010
	Penelitian, Pendidikan	(GCPF, Grand Canonical Partition	
	dan Penerapan MIPA,	Function) untuk Sistem Parafermi Orde	
	ISBN 978-979-9314-4-3.	Dua	
4	Seminar Nasional	Dinamika Pion Dari Interaksi Proton-	2009
	Penelitian, Pendidikan	Neutron Pada Model Potensial Reid	
	dan Penerapan MIPA,		
	Tahun 2009, ISBN 978-		
	979-96880-5-7.		

5	Seminar Nasional	Kajian Fungsi-Fungsi Termodinamika	2008
	Penelitian, Pendidikan	Sistem Parafermi Orde Dua	
	dan Penerapan MIPA,		
	Tahun 2008, ISBN 978-		
	979-99314-3-6		

G. Karya Buku dalam 5 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah Halaman	Penerbit
1.	Teori Relativitas Khusus	2011	108	
2.	Pengantar Fisika Kuantum	2010	75	

H. Perolehan HKI dalam 5-10 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah Halaman	Penerbit

I. Pengalaman Merumuskan Kebijakan Publik / Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No	Judul / Tema / Jenis Rekayasa Sosial Lainnya yang Tekah Diterapkan	Tahun	Tahun Penerapan	Respon Masyarakat

J. Penghargaan dalam 10 Tahun Terakhir

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan Hibah Pekerti

Yogyakarta, 19 Desember 2013 Pengusul,

(R. Yosi Aprian Sari, M.Si)

Biodata Anggota

A. Identitas Diri

1.	Nama Lengkap (dengan gelar)	Denny Darmawan, M.Sc		
2.	Jenis Kelamin	L		
3.	Jabatan Fungsional	Asisten Ahli		
4.	NIP	19791202 200312 1 002		
5.	NIDN	0002127901		
6.	Tempat dan Tanggal Lahir	Bantul, 2 Desember 1979		
7.	E-mail	darmawan@uny.ac.id		
8.	Nomor Telepon / HP	081328297839		
9.	Alamat Kantor	Jurdik Fisika FMIPA UNY		
10.	Nomor Telepon	0274-586168 pswt 365		
11.	Lulusan yang telah dihasilkan	$S1 = \text{orang} \qquad S2 = 0 \qquad S3 = 0$		
12.	Mata Kuliah yang Diampu	Fisika Komputasi		
		Praktikum Fisika Komputasi		
		Fisika Zat Padat Lanjut		
		Fisika Kuantum		
		Mikroprosesor		
		Fisika Zat Padat		
		Mikrokontroler		
		Astrofisika		
		Astronomi		
		Simulasi		

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama Perguruan Tinggi	UGM	University of Quensland	
Bidang Ilmu	Fisika	Physics	
Tahun Masuk - Lulus			
Judul Skripsi / Tesis /			
Disertasi			
Nama Pembimbing /			
Promotor			

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

			Pendar	aan
No	Tahun	Judul Penelitian	Sumber	Jumlah (Rp – Juta)
1	2013	Elektromagnetik Deuteron; Model	DPPM (Hibah	75
		Pertukaran Partikel Dalam Interaksi Kuat Gaya Inti Ditinjau Dari Fungsi	Pekerti)	
		Gelombang Non-Relativistik Dan		
		Relativistik Dalam Potensial Opep		

2	2012	Pengembangan Sistem Filtrasi Untuk Penjernihan Air Selokan Mataram Dengan Memanfaatkan Pasir Alam Dan	DIPA UNY	7,5
		Karbon Aktif		
3	2011	Pendekatan <i>Three Body Problems</i>	DIPA UNY	4
		Theory Untuk Mensimulasikan Efek		
		Jupiter Terhadap Gerakan Orbit Bumi		
4	2011	Back To The Future; Pembelajaran	DIPA UNY	4
		Visioner Pada Mata Kuliah Teori		
		Relativitas Khusus Dalam Upaya		
		Meningkatkan Daya Abstraksi		
		Mahasiswa		
5	2010	Edutainment For Children:	DIPA UNY	5
		Membangun Karakter Anak Usia		
		Sekolah Dasar Melalui Pendidikan		
		Sains		

D. Pengalaman Pengabdian kepada Masyarakat dalam 5 Tahun Terakhir

		Judul Dangahdian kanada	Pendanaan	
No	Tahun	Judul Pengabdian kepada Masyarakat	Sumber	Jumlah (Rp – Juta)
1.	2011	Edutainment For Children; Eksplorasi	DIPA UNY	3
		Sains Sederhana Bagi Guru-Guru SD		
		Di Kabupaten Bantul Dalam		
		Membangkitkan Nilai-Nilai Moralitas		
		Pada Anak Didik		

E. Publikasi Artikel Ilmiah Dalam Jurnal Dalam 5 Tahun Terakhir

No	Judul Artikel Ilmiah	Nama Jurnal	Volume / Nomor / Tahun
1.			

F. Pemakalah Seminar Ilmiah dalam 5 Tahun Terakhir

No	Nama Pertemuan Ilmiah / Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
1.			

G. Karya Buku dalam 5 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah Halaman	Penerbit
1.				

H. Perolehan HKI dalam 5-10 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah Halaman	Penerbit
1.				

I. Pengalaman Merumuskan Kebijakan Publik / Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No	Judul / Tema / Jenis Rekayasa Sosial Lainnya yang Tekah Diterapkan	Tahun	Tahun Penerapan	Respon Masyarakat

J. Penghargaan dalam 10 Tahun Terakhir

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Pekerti

Yogyakarta, 19 Desember 2013 Pengusul,

(Denny Darmawan, M.Sc)

DESKRIPSI TIM PENELITI MITRA

KETUA TPM

1. Nama : Prof. Dr. Agung Bambang Setio Utomo, S.U.

NIP : 19580502 198403 1 003
 Tempat dan Tanggal Lahir : Ungaran, 2 Mei 1958

4. Program Studi : Fisika

Fakultas : Matematika dan Ilmu Pengetahuan Alam

Perguruan Tinggi : Universitas Gadjah Mada

Alamat : Sekip Unit 3 Bulaksumur Yogyakarta 55281

No. Telpon/Fax : (0274) 902124
Email : atominti@ugm.ac.id

5. No Telpon Rumah : 08156882036

6. Jabatan Fungsional : Guru Besar

Jabatan Struktural : -

7. Bidang Keahlian : Fisika Laser dan Fisika Komputasi

8. Pendidikan Terakhir:

Gelar	Tahun	Program Studi	Nama Perguruan Tinggi	Negara
Drs.	1982	Fisika	Universitas Gadjah Mada	Indonesia
S.U.	1987	Fisika	Universitas Gadjah Mada	Indonesia
Ph.D.	1994	Solid State	University College of Swansea	Inggris

9. Pengalaman Penelitian:

No	Judul	Tahun, Sumber Dana
1	Laser Spectroscopy of Atoms in a Discharge Lamp Using Optogalvanic and Absorption Methods	1996, Young academic program, URGE-DIKTI/Batch II, Peneliti Utama
2	Kajian dan Pengembangan Sistem Spektroskopi Laser Terpadu dan Terkomputerisasi	1997, RUT V, Peneliti Pendamping
3	Sifat Elektrik / Galvanik Atom Gas dalam Tabung Lucutan Akibat Efek Cahaya	1999, DIKS/DRK-UGM, Peneliti Utama
4	Implementation of the Monte-Carlo Simulated	2000/2001, Proyek URGE-

	Annealing Method for Investigating the Superconducting Surface Sheaths in Type-II Superconductors	DCRG No.017/DCRG/URGE/2000, Peneliti Pendamping
5	Implementasi Model Ginzburg-Landau untuk Pengkajian Dinamika Vorteks Dalam Superkonduktor <i>Mesoscopic</i>	2003, RUT X, LIPI, Peneliti Pendamping
6	Rancang Bangun Peralatan Spektroskopi Inframerah untuk Penentuan Kualitas Susu Sapi Menggunakan Jaringan Syaraf	2004-2005, Hibah PEKERTI DIKTI, Ketua Tim Peneliti Mitra
7	Simulasi Numerik Konfigurasi Vortex pada Superkonduktor Berlandaskan Model Ginzburg- Landau	2004-2005, Hibah PEKERTI DIKTI, Anggota Tim Peneliti Mitra
8	Simulasi Komputer Pengaruh Efek Proksimitas Pada Konfigurasi <i>Vortex</i> Superkonduktor	2008, Hibah PEKERTI DIKTI Tahun I, Anggota Tim Peneliti Mitra
9	Dinamika Pertukaran Partikel Dalam Interaksi Nukleon-Nukleon	2011, Hibah PEKERTI DIKTI Tahun I, Ketua TPM
10	Elektromagnetik Deuteron; Model Pertukaran Partikel Dalam Interaksi Kuat Gaya Inti Ditinjau Dari Fungsi Gelombang Non-Relativistik Dan Relativistik Dalam Potensial OPEP	2013, DPPM (Hibah Pekerti) Ketua TPM

10. Publikasi Ilmiah:

No	Publikasi Ilmiah
1	Utomo, A.B.S., 1997, <i>Laser zat padat</i> , Jurnal Fisika Indonesia no 2, vol 1 edisi Mei.
2	Utomo, A.B.S., 1997, <i>Aplikasi lampu lucutan katoda berongga pada teknik laser optogalvanik menggunakan laser zat warna DCM + piridine</i> , Kontribusi Fisika Indonesia no 3, vol 8, edisi September.
3	Kosiyanto, Istiyanto, J.E. dan Utomo, A.B.S., 1999, <i>Pendeteksian osilasi mikro dengan interferometer Michelson berbantuan komputer</i> , Teknosains 12 (1), Edisi Januari 1999.
4	Nafili, F., Hermanto, A. dan Utomo, A.B.S., 2001, <i>Perambatan panas konduktor satu dimensi secara analisa numerik</i> , Jurnal Fisika Indonesia No. 15, Vol. V, edisi

	April
5	Nurwantoro, P., Palupi, D.S., Utomo, A.B.S., Hermanto, A. dan Basarudin, T., 2001, <i>Perhitungan Efek Permukaan dalam Superkonduktor Jenis ke-II Menggunakan Metode Simulated Annealing</i> , Prosiding Pertemuan Ilmiah HFI Jateng & DIY, XXI, 40-52.
6	Imron, M., Istiyanto, J.E. dan Utomo, A.B.S., 2002, <i>Visualisasi Gejala Difraksi-Interferensi Menggunakan PC</i> , Berkala Ilmiah MIPA, No 2, th XII.
7	Utomo, A.B.S., P Nurwantoro, K Abraha, I Setiawan dan G Maruto, 2005, <i>Kajian Perilaku Temporel Bahan Gas Dalam Tabung Lucutan Katoda Berrongga Akibat Berinteraksi dengan Berkas Laser</i> , Poster Seminar Nasional Hasil Penelitian Dasar th 2004, DIRJEN DIKTI, Mei 2005, Jakarta.
8	Supardi, Anwar, F., Nurwantoro, P. dan Utomo, A.B.S., 2005, <i>Simulasi Numerik Konfigurasi Vorteks Pada Superkonduktor Berlandaskan Model Ginzburg-Landau</i> , Jurnal Pendidikan Matematika dan Sains JPMS, Edisi Tahun X. No. 2
9	Fuad Anwar, Pekik Nurwantoro, Utomo, A.B.S. , Harsojo, Arief Hermanto, Prayoto, 2008, <i>Penghitungan Harga Medan Nukleasi Permukaan Superkonduktor Tipe II Dengan Minimisasi Downhill Simplex</i> , Seminar Nasional Fisika dan Pendidikan Fisika, UAD, 5 Mei 2008, Yogyakarta
10	R. Yosi Aprian Sari, Supardi, Agung BSU , Arief Hermanto, (2011), <i>Sistem Dua Nukleon; Deuteron sebagai Sistem Terikat (p, n) pada Potensial Lokal</i> , Jurnal Media Fisika, ISSN: 1412-5676. Vol 10 / No 2 / Mei 2011
11	Sari, Supardi, Agung BSU , Arief Hermanto, (2011), Momen Elektromagnetik n Pada Dinamika Pertukaran Partikel Dalam Potensial Lokal Reid, Seminar Nasional gi dan Keselamatan PLTN Serta Fasilitas Nuklir pada tanggal 1 Oktober 2011, Prosiding ISSN: 0854-2910 http://www.batan.go.id/ptrkn/file/tkpfn17/09.pdf .
12	R. Yosi Aprian Sari, Supardi, Agung BSU , Arief Hermanto, 2012, <i>Dinamika Pertukaran Partikel Pada Interaksi Nukleon-Nukleon dalam Potensial Lokal</i> , Journal Indonesian Journal of Applied Physics (IJAP), http://ijap.mipa.uns.ac.id.ISSN: 2089-0133 Vol 02 / No 1 / April 2012

DESKRIPSI TIM PENELITI MITRA

ANGGOTA TPM

1. Nama: Dr. Arief Hermanto, SU, MSc

2. NIP: 19610304 198503 1 003

3. Tempat dan Tanggal Lahir : Semarang, 4 Maret 1961

4. Program Studi: Fisika

Fakultas : Matematika dan Ilmu Pengetahuan Alam

Perguruan Tinggi: Universitas Gadjah Mada

Alamat : Jurusan Fisika FMIPA, UGM

Sekip Utara, Yogyakarta 55281 No. Telpon/Fax: 0274-545185

Email:

No Telpon Rumah : 0274- 883591 5. Jabatan Fungsional : Lektor Kepala

Jabatan Struktural : Ka Prodi Fisika Jur. Fisika FMIPA UGM

6. Pendidikan Terakhir:

Gelar	Tahun	Program Studi	Nama Perguruan Tinggi	Negara
S.Si	1984	Fisika	Universitas Gadjah Mada	Indonesia
SU	1986	Fisika	Universitas Gadjah Mada	Indonesia
MSc	1987	Fisika Teori	Louisiana State University	USA
PhD Cand	1994	Astrofisika	Louisiana State University	USA
Dr	2005	Fisika Komputasi	UGM	Indonesia

7. Pengalaman Penelitian:

No	Topik / Judul	Sponsor / Periode Waktu
1	Fisika Partikel dan Astrofisika	LSU,USA (Graduate Research Assistant) 1990-1993
2	Spektroscopi laser	RUT (Peneliti Anggota) 1993-1996
3	Dinamika Gas Relativistik	DPP-UGM (Peneliti Tunggal) 1996-1998

4	Dinamika Gas Relativistik	Penelitian Dasar (Peneliti Utama) 2001-2002
5	Konstruksi Laser	RUT (Peneliti Anggota) 2002-2005
6	Dinamika Gas Relativistik	Penelitian Fundamental (Mandiri) 2007
10	Elektromagnetik Deuteron; Model Pertukaran Partikel Dalam Interaksi Kuat Gaya Inti Ditinjau Dari Fungsi Gelombang Non- Relativistik Dan Relativistik Dalam Potensial OPEP	2013, DPPM (Hibah Pekerti) Anggota TPM

8. Publikasi Ilmiah

No	Publikasi Ilmiah
1	Hermanto, A. (2007). Sebuah Algoritma Sederhana Untuk Menetukan Validasi Argumentasi Dalam Logika Quantum, Semnas Hasil Penelitian MIPA dan Pendidikan MIPA, FMIPA Universitas Negeri Yogyakarta
2	Hermanto, A., (2007). Pemakalah A Method to Determine the Most General Non-Relativistic doppler Shift in Inhomogeneous Medium. Workshop on Theoretical Physics 2k7
3	Hermanto A . (2007). Kuantifikasi Terhadap Deviasi dari Bentuk Sferoid Sitem Gas Politropik Yang Berotasi Dalam Medan Grafitasi Eksternal. Seminar Nasional Klaster Riset. UGM
4	Hermanto, A. (2007) Using Computational System of Units to Derive Natural and Geometrical System of Units. Jogja International Physics Conference UGM
5	Hermanto, A. (2007). Computation and Simulation of the Configuration and Stability of Slightly-Viscous Polytropic Gaseous Spheroid and Toroid Rotating in Eksternal Gravitational Field. Second Asian Physics Symposium ITB
6	Asan Damanik, Mirza Satriawan, Arief Hemanto dan Pramudita Anggraita, (2007), <i>Minimal Left-Right Symmetry Model of Electroweak Interaction</i> . arXiv: 0708.1977 v1
7	Hermanto, A. (2008). Computation of General Relativistic Perturbation to Euler Equation Using Perturbation Method. Second International Conference on Mathematics and Natural Sciences ITB

8	Asan Damanik, Mirza Satriawan, Arief Hermanto , and Pramudita Anggraita, (2008), <i>Neutrino Mass Matrix from a Seesaw Mechanism with Heavy Majorana Neutrino Subject to Texture Zero and Invariant Under a Cyclic Permutation</i> , Journal of Theoretical and Comp. Studies Vol. 8 (2008) 0102
9	Fuad Anwar, Pekik Nurwantoro, Utomo, A.B.S., Harsojo, Arief Hermanto , Prayoto, (2008), <i>Penghitungan Harga Medan Nukleasi Permukaan Superkonduktor Tipe II Dengan Minimisasi Downhill Simplex</i> , Seminar Nasional Fisika dan Pendidikan Fisika, UAD, 5 Mei 2008, Yogyakarta
10	Arief Hermanto, (2009), A Simple Illustration to Explain The Concept of Total Derivative in The Context of Lagrangian and Eulerian Pictures in Fluida Dynamics, International Conference on Mathematics and Apllications (IICMA), ITB, Bandung
11	R. Yosi Aprian Sari, Supardi, Agung BSU, Arief Hermanto , (2011), <i>Sistem Dua Nukleon; Deuteron sebagai Sistem Terikat</i> (p, n) pada Potensial Lokal, Jurnal Media Fisika, ISSN: 1412-5676. Vol 10 / No 2 / Mei 2011
12	R. Yosi Aprian Sari, Supardi, Agung BSU, Arief Hermanto , (2011), Momen Elektromagnetik Statik Deuteron Pada Dinamika Pertukaran Partikel Dalam Potensial Lokal Reid, Seminar Nasional ke-17 Teknologi dan Keselamatan PLTN Serta Fasilitas Nuklir pada tanggal 1 Oktober 2011, dimuat dalam Prosiding ISSN: 0854-2910 http://www.batan.go.id/ptrkn/file/tkpfn17/09.pdf .
13	R. Yosi Aprian Sari, Supardi, Agung BSU, Arief Hermanto , 2012, <i>Dinamika Pertukaran Partikel Pada Interaksi Nukleon-Nukleon dalam Potensial Lokal</i> , Journal Indonesian Journal of Applied Physics (IJAP), http://ijap.mipa.uns.ac.id.ISSN: 2089-0133 Vol 02 / No 1 / April 2012

Lampiran 5.

Surat Pernyataan Ketua Peneliti

DEPARTEMEN PENDIDIKAN NASIONAL UNVERSITAS NEGERI YOGYAKARTA

FAKULTAS MATEMTIKA DAN ILMU PENGETAHUAN ALAM

Karangmalang, Yogyakarta 55281, Tel. 548203 (Dekan), 565411 (TU), 586168 Pswt 217

SURAT PERNYATAAN KETUA PENELITI

Yang bertanda tangan di bawah ini:

Nama

: R. Yosi Aprian Sari, M.Si

NIDN

: 0007047308

Pangkat / Golongan : Penata / IIIc

Jabatan Fungsional

Lektor

Dengan ini menyatakan bahwa proposal penelitian saya dengan judul:

ELEKTROMAGNETIK DEUTERON; MODEL PERTUKARAN PARTIKEL DALAM INTERAKSI KUAT GAYA INTI DITINJAU DARI FUNGSI GELOMBANG NON-RELATIVISTIK DAN RELATIVISTIK DALAM POTENSIAL OPEP

yang diusulkan dalam skema Hibah Pekerti untuk tahun anggaran 2013 bersifat original dan belum pernah dibiayai oleh lembaga / sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka sayabersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikanseluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Yogyakarta, 18 Maret 2013

Mengetahui, Ketua LPPM UNY,

Prof. Dr. Anik-Gufron, M.Pd NIP. 19621111 198803 1 001

TEMPEL D946FABF2841188

R. Yosi Aprian Sari, M.Si

NIP. 19730407 200604 1 001

Yang menyatakan,

•	•	
Lam	piran	l 6.

Endorsement:

LEMBAR PERSETUJUAN TIM PENELITI MITRA

Dalam pelaksanaan penelitian Hibah Pekerti berjudul: "ELEKTROMAGNETIK DEUTERON; MODEL PERTUKARAN PARTIKEL DALAM INTERAKSI KUAT GAYA INTI DITINJAU DARI FUNGSI GELOMBANG NON-RELATIVISTIK DAN RELATIVISTIK DALAM POTENSIAL OPEP " yang diusulkan oleh : Ketua Tim Peneliti Pengusul (TPP):

a. Nama Lengkap dan Gelar

: R. Yosi Aprian Sari, M.Si.

b. NIP

19730407 200604 1 001

c. Jenis Kelamin

: Laki-laki

d. Pangkat/Golongan

: Penata / IIIc

e. Jabatan Fungsional

: Lektor

f. Jabatan Struktural

g. Fakultas / Jurusan

h. Perguruan Tinggi

MIPA / Pendidikan Fisika Universitas Negeri Yogyakarta

kami selaku Ketua Tim Peneliti Mitra (TPM)

a. Nama Lengkap dan Gelar : Prof. Dr. Agung Bambang Setio Utomo, SU.

b. NIP 19580502 198403 1 003

c. Jenis Kelamin

Laki-laki

d. Pangkat/Golongan

: Pembina Utama Muda / IVc

e. Jabatan Fungsional

: Guru Besar

f. Jabatan Struktural

: MIPA / Fisika

g. Fakultas / Jurusan h. Perguruan Tinggi

Universitas Gadjah Mada (UGM)

menyatakan bahwa:

- 1. Topik penelitian yang diusulkan TPP sesuai dengan bidang keahlian TPM di kelompok Fisika Komputasi FMIPA UGM.
- TPM setuju menjadi mitra TPP dalam pelaksanaan penelitian tersebut.
 Kondisi dan kapasitas laboratorium TPM dapat menerima TPP selama pelaksanaan penelitian.

Yogyakarta, 20 Maret 2013 Ketua Tim Peneliti Mitra,

Prof. Dr. Agung Bambang Setio Utomo, SU

NIP. 19580502 198403 1 003

Lampiran 7.

Pernyataan dari Atasan Langsung TPP

DEPARTEMEN PENDIDIKAN NASIONAL UNVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMTIKA DAN ILMU PENGETAHUAN ALAM Karangmalang, Yogyakarta 55281, Tel. 548203 (Dekan), 565411 (TU), 586168 Pswt 217

Nomor: 1218/UH34-13/LT /2013

Yang bertanda tangan di bawah ini Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta, menerangkan dengan sesungguhnya bahwa:

Nama

: R. Yosi Aprian Sari, M.Si

NIP

: 19730407 200604 1 001

Jabatan/Pangkat/Golongan

: Lektor / Penata / IIIc

Jurusan/Fakultas/ Universitas : Pendidikan Fisika / FMIPA / UNY

Pada saat surat keterangan ini dikeluarkan, yang bersangkutan:

1. Tidak sedang mengikuti pendidikan pascasarjana

2. Tidak sedang memangku jabatan struktural.

Demikian surat keterangan ini dibuat untuk dapat dipergunakan sebagaimana mestinya.

Yogyakarta, 18 Maret 2013

Mengetahui,

kan FMIPA UNY

Dr. Hartone NIP. 19620329 198702 1 002

DEPARTEMEN PENDIDIKAN NASIONAL UNVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMTIKA DAN ILMU PENGETAHUAN ALAM Karangmalang, Yogyakarta 55281, Tel. 548203 (Dekan), 565411 (TU), 586168 Pswt 217

SURAT KETERANGAN Nomor: 1219 1UN34-13/LT/2013

Yang bertanda tangan di bawah ini Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta, menerangkan dengan sesungguhnya bahwa:

Nama

: Denny Darmawan, M.Sc

NIP

: 19791202 200312 1 002

Jabatan/Pangkat/Golongan

: Asisten Ahli / Penata Muda / IIIa

Jurusan/Fakultas/ Universitas : Pendidikan Fisika / FMIPA / UNY

Pada saat surat keterangan ini dikeluarkan, yang bersangkutan:

- Tidak sedang mengikuti pendidikan pascasarjana
- 2. Tidak sedang memangku jabatan struktural.

Demikian surat keterangan ini dibuat untuk dapat dipergunakan sebagaimana mestinya.

Yogyakarta, 18 Maret 2013

Mengetahui,

Dekan FMIPA UNY

Dr. Hartono

NIP. 19620329 198702 1 002

Lampiran 8.

Pernyataan TPP

SURAT PERNYATAAN

Yang bertanda tangan di bawah ini, saya:

Nama

: R. Yosi Aprian Sari, M.Si

NIP

: 19730407 200604 1 001

Jabatan

: Staf Pengaiar Jurusan Pendidikan Fisika FMIPA UNY

Dengan ini menyatakan bersedia untuk melaksanakan program penelitian kerjasama antar perguruan tinggi (PEKERTI) dengan ketentuan sebagai berikut :

- Bersedia melaksanakan program penuh waktu sesuai dengan penjadwalan program dalam perjanjian yang ditetapkan.
- Bersedia tinggal di tempat perguruan tinggi mitra selama waktu yang ditetapkan dalam surat perjanjian.

Demikian surat perjanjian ini dibuat dengan sebenar-benarnya untuk dapat dipergunakan sebagaimana mestinya.

Mengetahui/Menyetujui,

Dekan PMIPA UNY

Dr. Hartono

NIP. 19620329 198702 1 002

Yogyakarta, 18 Maret 2013

Ketna Reneliti.

R. Yosi Abrian Sari, M.Si.

NIP. 19730407 200604 1 001

SURAT PERNYATAAN

Yang bertanda tangan di bawah ini, saya:

Nama

: Denny Darmawan, M.Sc

NIP

: 19791202 200312 1 002

Jabatan

: Staf Pengajar Jurusan Pendidikan Fisika FMIPA UNY

Dengan ini menyatakan bersedia untuk melaksanakan program penelitian kerjasama antar perguruan tinggi (PEKERTI) dengan ketentuan sebagai berikut :

- Bersedia melaksanakan program penuh waktu sesuai dengan penjadwalan program dalam perjanjian yang ditetapkan.
- Bersedia tinggal di tempat perguruan tinggi mitra selama waktu yang ditetapkan dalam surat perjanjian.

Demikian surat perjanjian ini dibuat dengan sebenar-benarnya untuk dapat dipergunakan sebagaimana mestinya.

Mengetahui/Menyetujui,

Dekan EMIPA UNY

Dr. Hartono

NIP. 19620329 198702 1 002

Yogyakarta, 18 Maret 2013

Anggota Peneliti,

Denny Darmawan, M.Sc

NIP. 19791202 200312 1 002