BAB III

PEMBAHASAN

Pada bab ini akan dibahas invers matriks dan determinan atas aljabar max-plus sehingga didapat karakteristik matriks invertible. Jika matriks A invertible maka B adalah invers kanan matriks A sehingga memenuhi $A \otimes B = E$ dan B merupakan invers kiri matriks A sehingga memenuhi $B \otimes A = E$. Penyelesaian invers matriks atas aljabar max-plus dapat menggunakan berbagai cara, salah satunya dengan menerapkan menentukan subsolusi terbesar. Sebelumnya akan dilakukan langkah pendekatan penyelesaian dalam menerapkan metode ini pada penyelesaian persamaan linear max-plus $A \otimes C = B$ untuk menentukan matriks C sehingga memenuhi $A \otimes C = B$ dengan A dan B adalah matriks atas aljabar max-plus. Penyelesaian persamaan linear max-plus $A \otimes C = B$ adalah pengembangan dari penyelesaian persamaan linear Ax = b yang telah menggunakan menentukan subsolusi terbesar.

A. Invers Matriks atas Aljabar Max-Plus

Telah diketahui dalam aljabar linear biasa tidak semua matriks memiliki invers. Dalam aljabar *max-plus*, matriks yang memiliki invers bisa jadi lebih terbatas, sehingga dibutuhkan syarat perlu dan syarat cukup matriks *invertible*. Terlebih dahulu diberikan beberapa definisi sebagai berikut:

Definisi 3.1. (Farlow, 2009:18)

Matriks $A \in \mathbb{R}_{\max}^{n \times n}$ invertible atas aljabar max-plus jika \exists matriks B sehingga $A \otimes B = E$, dengan invers dari A dinotasikan $A^{\otimes -1} = B$.

Selanjutnya akan diidentifikasi matriks invertible berdasarkan definisi berikut:

Definisi 3.2. (Farlow, 2009: 19)

Sebuah matriks permutasi adalah matriks yang setiap baris ke-i dan setiap kolom ke-j memuat tepat satu entri yaitu e dan entri selain itu adalah e. Jika $\sigma:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ adalah permutasi maka matriks permutasi atas aljabar max-plus dapat didefinisikan $P_{\sigma}=[p_{ij}]$ dengan

$$p_{ij} = \begin{cases} e : i = \sigma(j) \\ \varepsilon : i \neq \sigma(j) \end{cases}$$

Sehingga kolom ke-j dari P_{σ} memiliki e pada baris ke- $\sigma(j)$.

Contoh 3.1:

Diberikan matriks permutasi berukuran 2 × 2

$$P_{\sigma} = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$$
 atau $P_{\sigma} = \begin{bmatrix} \varepsilon & e \\ e & \varepsilon \end{bmatrix}$

Matriks permutasi $P_{\sigma} = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$, karena susunan entrinya sama seperti matriks identitas, maka dapat disebut juga sebagai matriks identitas. Oleh karena itu, matriks permutasi yang entri diagonalnya dari kiri ke kanan adalah e dan selain itu ε merupakan matriks identitas (E).

Contoh 3.2:

Diberikan
$$A = \begin{bmatrix} 2 & 7 & -2 \\ 5 & 8 & 3 \\ -1 & 4 & 6 \end{bmatrix}, P_{\sigma} = \begin{bmatrix} \varepsilon & \varepsilon & e \\ e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \end{bmatrix}$$

$$P_{\sigma} \otimes A = \begin{bmatrix} \varepsilon & \varepsilon & e \\ e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} 2 & 7 & -2 \\ 5 & 8 & 3 \\ -1 & 4 & 6 \end{bmatrix} = \begin{bmatrix} -1 & 4 & 6 \\ 2 & 7 & -2 \\ 5 & 8 & 3 \end{bmatrix}$$

Perkalian sebelah kiri dari P_{σ} mempermutasi baris-baris matriks, sehingga baris ke-i dari A muncul sebagai baris ke- $\sigma(i)$ dari $P_{\sigma} \otimes A$.

Matriks permutasi P_{σ} memiliki invers yaitu $P_{\sigma^{-1}}$ dengan $P_{\sigma^{-1}}$ adalah transpose dari P_{σ} , diperoleh $P_{\sigma^{-1}} = P_{\sigma^T}$, sehingga $P_{\sigma} \otimes P_{\sigma^{-1}} = E$.

Contoh 3.3:

Diberikan
$$P_{\sigma} = \begin{bmatrix} \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \\ e & \varepsilon & \varepsilon \end{bmatrix}$$

$$P_{\sigma^{-1}} = P_{\sigma^{T}} = \begin{bmatrix} \varepsilon & \varepsilon & e \\ e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \end{bmatrix}$$

$$P_{\sigma} \otimes P_{\sigma^{-1}} = \begin{bmatrix} \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \\ e & \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & \varepsilon & e \\ e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \end{bmatrix} = \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix} = E$$

Definisi 3.3. (Farlow, 2009:19)

Jika $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}_{\text{max}}, \lambda_i \neq \varepsilon$, maka matriks diagonal didefinisikan berikut:

$$D(\lambda_i) = \begin{bmatrix} \lambda_1 & \varepsilon & \dots & \varepsilon \\ \varepsilon & \lambda_2 & \vdots & \varepsilon \\ \dots & \dots & \ddots & \dots \\ \varepsilon & \varepsilon & \dots & \lambda_n \end{bmatrix}$$

Matriks diagonal $D(\lambda_i)$ memiliki invers yaitu $D(-\lambda_i)$ dengan $-\lambda_i = \lambda_i^{\otimes -1}$, sehingga $D(\lambda_i) \otimes D(-\lambda_i) = E$.

Contoh 3.4:

Diberikan matriks diagonal berukuran 3×3

$$D(\lambda_i) = \begin{bmatrix} 2 & \varepsilon & \varepsilon \\ \varepsilon & 5 & \varepsilon \\ \varepsilon & \varepsilon & 4 \end{bmatrix}$$

$$D(-\lambda_i) = \begin{bmatrix} -2 & \varepsilon & \varepsilon \\ \varepsilon & -5 & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix}$$

$$D(\lambda_i) \otimes D(-\lambda_i) = \begin{bmatrix} 2 & \varepsilon & \varepsilon \\ \varepsilon & 5 & \varepsilon \\ \varepsilon & \varepsilon & 4 \end{bmatrix} \otimes \begin{bmatrix} -2 & \varepsilon & \varepsilon \\ \varepsilon & -5 & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix} = \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix} = E$$

Jadi $D(\lambda_i) \otimes D(-\lambda_i) = E$.

Berdasarkan beberapa definisi yang telah diberikan, didapat teorema berikut **Teorema 3.1.** (Farlow, 2009:19)

 $A \in \mathbb{R}_{\max}^{n \times n}$ memiliki invers kanan jika dan hanya jika ada permutasi σ dan nilai $\lambda_i > \varepsilon$, $i \in \{1, 2, ..., n\}$ sehingga $A = P_{\sigma} \otimes D(\lambda_i)$.

Bukti:

(⇒) Diberikan $A \in \mathbb{R}_{\max}^{n \times n}$, $\exists B$, sehingga memenuhi persamaan $A \otimes B = E$, berarti

(1)
$$\max_{k} (a_{ik} + b_{ki}) = e = 0.$$

Untuk setiap i ada k sehingga $a_{ik} + b_{ki} = e$, didapatkan fungsi $k = \theta(i)$ dengan $a_{i\theta(i)} > \varepsilon$ dan $b_{\theta(i)i} > \varepsilon$.

- (2) $\max_{k} (a_{ik} + b_{kj}) = \varepsilon = -\infty$ untuk semua $i \neq j$ Berdasarkan (2), didapatkan
- (3) $a_{i\theta(j)} = \varepsilon$ untuk semua $i \neq j$.

Karena $a_{i\theta(i)} > \varepsilon = a_{i\theta(j)}$ untuk semua $i \neq j$, maka θ adalah sebuah injeksi dan sebuah permutasi. $a_{i\theta(i)}$ adalah entri tunggal di kolom ke- $\theta(i)$ dari A yaitu bukan ε . Misal $\hat{A} = P_{\theta} \otimes A$. Baris ke- $\theta(i)$ dari \hat{A} adalah baris ke-i dari A, yang memiliki entri yang lebih besar maka ε di kolom ke- $\theta(i)$.

Dengan demikian, semua entri diagonal \hat{A} yang lebih besar menjadi ε . A hanya memiliki satu entri non- ε di setiap kolom, yang juga berlaku untuk \hat{A} .

Sehingga didapat $P_{\theta} \otimes A = \hat{A} = D(\lambda_i)$ dengan $\lambda_i = a_{\theta^{-1}(i)i} > \varepsilon$.

Misal $\sigma=\theta^{-1}$, karena $P_{\sigma}\otimes P_{\theta}=P_{\theta^{-1}}\otimes P_{\theta}=E$, maka

$$A = P_{\sigma} \otimes D(\lambda_i)$$

Jadi terbukti $A = P_{\sigma} \otimes D(\lambda_i)$.

(⇐) Asumsikan $A = P_{\sigma} \otimes D(\lambda_i)$ dengan $\lambda_i \in \mathbb{R}_{\max}$ dan $\lambda_i > \varepsilon$.

Jika pernyataan itu benar maka misal $B=P_{\sigma^{-1}}\otimes D(-\lambda_i)$, dengan $-\lambda_i=\lambda_i^{\otimes -1}$. Sehingga didapat

$$A \otimes B = (P_{\sigma} \otimes D(\lambda_i)) \otimes (P_{\sigma^{-1}} \otimes D(-\lambda_i))$$

$$= P_{\sigma} \otimes (D(\lambda_{i}) \otimes D(-\lambda_{i})) \otimes P_{\sigma^{-1}}$$

$$= P_{\sigma} \otimes E \otimes P_{\sigma^{-1}}$$

$$= P_{\sigma} \otimes P_{\sigma^{-1}}$$

$$= E$$

Sehingga $A \otimes B = E$ dan B adalah invers kanan dari A.

Berdasarkan teorema 3.1. didapat syarat perlu dan syarat cukup matriks A invertible atas aljabar max-plus yaitu matriks A invertible jika dan hanya jika matriks A adalah matriks diagonal yang dipermutasi dengan $A = P_{\sigma} \otimes D(\lambda_i)$. Matriks A yang dapat dibalik berupa matriks yang setiap baris dan setiap kolom memuat tepat satu entri bukan ε dan entri selain itu adalah ε .

Contoh 3.5:

Matriks A invertible atas aljabar max-plus ditunjukkan berikut

a. Diberikan
$$P_{\sigma} = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}, D(\lambda_i) = \begin{bmatrix} 4 & \varepsilon \\ \varepsilon & 7 \end{bmatrix}$$

$$A = P_{\sigma} \otimes D(\lambda_i) = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix} \otimes \begin{bmatrix} 4 & \varepsilon \\ \varepsilon & 7 \end{bmatrix} = \begin{bmatrix} 4 & \varepsilon \\ \varepsilon & 7 \end{bmatrix}$$
b. Diberikan $P_{\sigma} = \begin{bmatrix} \varepsilon & e \\ e & \varepsilon \end{bmatrix}, D(\lambda_i) = \begin{bmatrix} 4 & \varepsilon \\ \varepsilon & 7 \end{bmatrix}$

$$A = P_{\sigma} \otimes D(\lambda_i) = \begin{bmatrix} \varepsilon & e \\ e & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} 4 & \varepsilon \\ \varepsilon & 7 \end{bmatrix} = \begin{bmatrix} \varepsilon & 7 \\ 4 & \varepsilon \end{bmatrix}$$

Berdasarkan contoh 3.5, karena matriks A adalah matriks diagonal yang dipermutasi maka matriks A invertible. P_{σ} mempermutasi baris-baris matriks

diagonal, sehingga baris ke-i dari $D(\lambda_i)$ muncul sebagai baris ke- $\sigma(i)$ dari $P_{\sigma} \otimes D(\lambda_i)$.

Ketunggalan invers matriks diberikan pada teorema berikut

Teorema 3.2. (Farlow, 2009:20)

 $A, B \in \mathbb{R}_{\max}^{n \times n}$ jika $A \otimes B = E$ maka $B \otimes A = E$ dan B ditentukan secara unik (tunggal) oleh A.

Bukti:

Berdasarkan teorema 3.1. telah diketahui bahwa $A = P_{\sigma} \otimes D(\lambda_i)$ untuk beberapa nilai $\lambda_i > \varepsilon$ dan permutasi σ . Ambil sebarang $\hat{B} = D(-\lambda_i) \otimes P_{\sigma^{-1}}$ adalah invers kiri dari A. Jika $A \otimes B = E$ maka $\hat{B} = \hat{B} \otimes (A \otimes B) = (\hat{B} \otimes A) \otimes B = E \otimes B = B$, menunjukkan bahwa B tunggal dan ditentukan secara unik (tunggal) oleh A.

Jika invers dari A yaitu $A^{\otimes -1} = B$ berada di sebelah kanan maka B disebut dengan invers kanan dari A sehingga dapat ditulis $A \otimes B = E$. Apabila B berada di sebelah kiri maka B disebut dengan invers kiri dari A sehingga dapat ditulis $B \otimes A = E$. Dengan demikian, matriks A memiliki invers yaitu matriks B dengan solusi tunggal dengan invers kanan juga merupakan invers kiri.

Lemma 3.3. (Farlow, 2009:21)

Jika $A \in \mathbb{R}_{\max}^{n \times n}$ dan $B \in \mathbb{R}_{\max}^{n \times n}$ invertible maka $A \otimes B$ invertible.

Bukti:

Berdasarkan teorema 3.1., dapat ditulis

$$A = P_{\sigma a} \otimes D(\lambda_i^a) \operatorname{dan} B = D(\lambda_i^b) \otimes P_{\sigma b}$$

Maka
$$A \otimes B = P_{\sigma a} \otimes D(\lambda_i^a) \otimes D(\lambda_i^b) \otimes P_{\sigma b}$$

Hasil perkalian dua matriks diagonal adalah matriks diagonal, sehingga didapatkan

$$A \otimes B = P_{\sigma a} \otimes D(\lambda_i^a \otimes \lambda_i^b) \otimes P_{\sigma b}$$

Sehingga $A \otimes B$ adalah matriks diagonal yang dipermutasi. Oleh karena itu, $A \otimes B$ invertible.

Contoh 3.6:

Diberikan matriks $A, B \in \mathbb{R}_{\max}^{n \times n}, A = \begin{bmatrix} 2 & \varepsilon \\ \varepsilon & 3 \end{bmatrix}$ dan matriks $B = \begin{bmatrix} \varepsilon & 4 \\ -1 & \varepsilon \end{bmatrix}$.

Karena matriks A dan B adalah matriks diagonal yang dipermutasi maka matriks A dan B invertible.

Akan dicari $A \otimes B$

$$A \otimes B = \begin{bmatrix} 2 & \varepsilon \\ \varepsilon & 3 \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & 4 \\ -1 & \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} 2 \otimes \varepsilon \oplus \varepsilon \otimes -1 & 2 \otimes 4 \oplus \varepsilon \otimes \varepsilon \\ \varepsilon \otimes \varepsilon \oplus 3 \otimes -1 & \varepsilon \otimes 4 \oplus 3 \otimes \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus \varepsilon & 6 \oplus \varepsilon \\ \varepsilon \oplus 2 & \varepsilon \oplus \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon & 6 \\ 2 & \varepsilon \end{bmatrix}$$

Karena matriks $A \otimes B$ adalah matriks diagonal yang dipermutasi maka $A \otimes B$ invertible.

Sifat-sifat dari invers matriks atas aljabar *max-plus* diberikan pada teorema berikut:

Teorema 3.4.

Jika matriks $A,B \in \mathbb{R}_{\max}^{n \times n}$ invertible maka diperoleh:

$$(1) (A^{\otimes -1})^{\otimes -1} = A$$

$$(2) (AB)^{\otimes -1} = B^{\otimes -1}A^{\otimes -1}$$

$$(3) (A^{\otimes -1})^t = (A^t)^{\otimes -1}$$

(4)
$$(A^n)^{\otimes -1} = (A^{\otimes -1})^n$$
, untuk $n = 0, 1, 2, ...$

(5)
$$(kA)^{\otimes -1} = \frac{1}{k} A^{\otimes -1}$$
, untuk $k \neq 0$

Bukti:

- (1) $A^{\otimes -1}$ adalah invers dari A sehingga $A^{\otimes -1}A = AA^{\otimes -1} = E$. Akibatnya $(A^{\otimes -1})^{\otimes -1}$ adalah invers dari $A^{\otimes -1}$ sehingga $A^{\otimes -1}(A^{\otimes -1})^{\otimes -1} = E$. Karena $A^{\otimes -1}(A^{\otimes -1})^{\otimes -1} = E = A^{\otimes -1}A$ maka $(A^{\otimes -1})^{\otimes -1} = A$.
- (2) Anggap $X = B^{\otimes -1}A^{\otimes -1}$, menunjukkan bahwa (AB)X = E. Diperoleh $(AB)X = (AB)B^{\otimes -1}A^{\otimes -1} = A(BB^{\otimes -1})A^{\otimes -1} = A(E)A^{\otimes -1} = AA^{\otimes -1} = E = (AB)(AB)^{\otimes -1}$. Jadi $(AB)^{\otimes -1} = B^{\otimes -1}A^{\otimes -1}$.
- (3) Anggap $X=(A^{\otimes -1})^t$, menunjukkan bahwa $A^tX=E$. Dengan membentuk $A^tX=A^t(A^{\otimes -1})^t=(A^{\otimes -1}A)^t=E^t=E$. Oleh karena itu, $(A^t)^{\otimes -1}=X=(A^{\otimes -1})^t$.
- (4) Anggap $X = (A^{\otimes -1})^n$, menunjukkan bahwa $A^n X = E$. Dengan membentuk $A^n X = A^n (A^{\otimes -1})^n = (AA^{\otimes -1})^n = E^n = E.$

Jadi
$$(A^t)^{\otimes -1} = X = (A^{\otimes -1})^t$$
.

(5) Anggap $X = \frac{1}{k}A^{\otimes -1}$, menunjukkan bahwa (kA)X = E. Dengan membentuk $(kA)\left(\frac{1}{k}A^{\otimes -1}\right) = \frac{1}{k}(kA)\left(A^{\otimes -1}\right) = (\frac{1}{k}k)\left(AA^{\otimes -1}\right) = (1)E = E$. Demikian juga $\left(\frac{1}{k}A^{\otimes -1}\right)(kA) = E$. Sehingga kA dapat dibalik, didapat $(kA)^{\otimes -1} = \left(\frac{1}{k}A^{\otimes -1}\right)$

Teorema 3.5. (Farlow, 2009: 21)

Diberikan $A \in \mathbb{R}_{\max}^{n \times n}$ dan misal $L_A : \mathbb{R}_{\max}^n \to \mathbb{R}_{\max}^n$ dengan $L_A(x) = A \otimes x$. Sehingga pernyataan berikut ekuivalen

- 1. $A = P_{\sigma} \otimes D(\lambda_i)$ untuk beberapa permutasi dan $\lambda_i > \varepsilon$
- 2. L_A surjektif
- 3. *A* memiliki invers kanan: $A \otimes B = E$
- 4. *A* memiliki invers kiri: $B \otimes A = E$
- 5. L_A injektif

Bukti:

 $(3 \Leftrightarrow 1)$ Sudah dibuktikan pada teorema 3.1.

(1 \Rightarrow 2) Ambil sembarang $A \otimes x = P_{\sigma} \otimes D(\lambda_i) \otimes x \in \mathbb{R}^n_{\max}$ dengan $\lambda_i \in \mathbb{R}_{\max}$ dan $\lambda_i > \varepsilon$ maka $x \in \mathbb{R}^n_{\max}$, sehingga $A_{ij} \otimes x_{ij} \in \mathbb{R}^n_{\max}$, $\forall i \text{ dan } j$. Jadi terdapat $x \in \mathbb{R}^n_{\max}$ dengan $L_{A_{ij}}(x_{ij}) = A_{ij} \otimes \mathbb{R}^n$

 x_{ij} , $\forall i$ dan j. Jadi untuk setiap $A \otimes x \in \mathbb{R}^n_{\max}$ terdapat $x \in \mathbb{R}^n_{\max}$ sedemikian hingga $L_A(x) = A \otimes x$ yang berarti L_A surjektif.

(2 \Rightarrow 3) Karena L_A surjektif, jadi untuk setiap $A \otimes x \in \mathbb{R}^n_{\max}$ terdapat $x \in \mathbb{R}^n_{\max}$ sedemikian hingga $L_A(x) = A \otimes x$. Asumsikan $A = P_\sigma \otimes D(\lambda_i)$ dengan $\lambda_i \in \mathbb{R}_{\max}$ dan $\lambda_i > \varepsilon$. Jika pernyataan itu benar maka misal $B = P_{\sigma^{-1}} \otimes D(-\lambda_i)$, dengan $-\lambda_i = \lambda_i^{\otimes -1}$. Sehingga didapat

$$L_{A}(x) \otimes B = A \otimes x \otimes B$$

$$= (P_{\sigma} \otimes D(\lambda_{i})) \otimes x \otimes (P_{\sigma^{-1}} \otimes D(-\lambda_{i}))$$

$$= P_{\sigma} \otimes (D(\lambda_{i}) \otimes D(-\lambda_{i})) \otimes P_{\sigma^{-1}} \otimes x$$

$$= P_{\sigma} \otimes E \otimes P_{\sigma^{-1}} \otimes x$$

$$= (P_{\sigma} \otimes P_{\sigma^{-1}}) \otimes x$$

$$= E \otimes x$$

Karena $A \otimes B = E$, sehingga A memiliki invers kanan yaitu B.

= x

(3 \Rightarrow 4) Diberikan $A = P_{\sigma} \otimes D(\lambda_i)$ dengan $\lambda_i \in \mathbb{R}_{\max}$ dan $\lambda_i > \varepsilon$. Karena $A \otimes B = E$, sehingga A memiliki invers kanan yaitu B dengan $B = P_{\sigma^{-1}} \otimes D(-\lambda_i)$, dengan $-\lambda_i = \lambda_i^{\otimes -1}$. Sehingga didapat $A \otimes B = (P_{\sigma} \otimes D(\lambda_i)) \otimes (P_{\sigma^{-1}} \otimes D(-\lambda_i))$

$$= P_{\sigma} \otimes (D(\lambda_{i}) \otimes D(-\lambda_{i})) \otimes P_{\sigma^{-1}}$$

$$= P_{\sigma} \otimes E \otimes P_{\sigma^{-1}}$$

$$= P_{\sigma} \otimes P_{\sigma^{-1}}$$

$$= E$$

$$= P_{\sigma^{-1}} \otimes P_{\sigma}$$

$$= P_{\sigma^{-1}} \otimes E \otimes P_{\sigma}$$

$$= P_{\sigma^{-1}} \otimes (D(-\lambda_i) \otimes (D(\lambda_i)) \otimes P_{\sigma}$$

$$= (P_{\sigma^{-1}} \otimes D(-\lambda_i)) \otimes (P_{\sigma} \otimes D(\lambda_i))$$

$$= B \otimes A$$

Karena $A \otimes B = E = B \otimes A$, maka invers kanan juga merupakan invers kiri.

- $(4\Rightarrow 5)$ A memiliki invers kiri yaitu B maka $B\otimes A=E$, sehingga $B\otimes A\otimes x=B\otimes L_A(x)$. Misalkan ambil sembarang $x,\hat{x}\in\mathbb{R}^n_{\max}$, sedemikian hingga $L_A(x)=L_A(\hat{x})$ yaitu $A\otimes x=A\otimes \hat{x}$ dengan $A\otimes x,A\otimes \hat{x}\in\mathbb{R}^n_{\max}$. Karena $A\otimes x=A\otimes \hat{x}$ maka $x=\hat{x}$. Hal ini berarti $\forall i$ dan j berlaku $x_{ij}=\hat{x}_{ij}$. Jadi $x=\hat{x}$ yang berarti L_A injektif.
- (5 \Rightarrow 1) Misal L_A injektif. Untuk setiap i dapat didefinisikan himpunan $F_i = \{j: a_{ji} > \varepsilon\} \text{ dan } G_i = \{j: a_{jk} > \varepsilon \text{ untuk } k \neq i\}.$ dinyatakan $F_i \nsubseteq G_i$, kontradiksi anggap bahwa $F_i \subseteq G_i$.

Akan ditunjukkan kontradiksi dengan L_A injektif.

Diberikan $x = [x_k]$ dengan $x_k = \begin{cases} e : k \neq i \\ \varepsilon : k = i \end{cases}$

Misal $b=A\otimes x=\bigoplus_{k\neq i}a_{*k}$, dengan a_{*k} didefinisikan kolom ke-k dari A.

Misalkan $j \in F_i$, maka $j \in G_i$. Berarti ada $k \neq i$ untuk $a_{jk} > \varepsilon$.

Karena itu, $b_j \ge a_{jk} > \varepsilon$. Karena $a_{ji} > \varepsilon$, maka didapatkan $\beta_j > \varepsilon$ sehingga $\beta_j \otimes a_{ji} \le b_j$.

Jika $j \notin F_i$ maka $a_{ji} = \varepsilon$. Karena itu, $\beta \otimes a_{ji} \leq b_j$, $\forall j$.

Misal
$$\beta = \min_{j \in F_i} \beta_j$$
. Maka $\beta > 0$ dan $\beta \otimes a_{ji} \leq b_j$, $\forall j$.

Dapat dikatakan $\beta \otimes a_{*i} \leq b$. Maka didapatkan

$$A \otimes [x \oplus \beta \otimes e_i] = [A \otimes x] \oplus [\beta \otimes A \otimes e_i]$$
$$= b \oplus \beta \otimes a_{*i} = b.$$

Sehingga untuk $\hat{x} = x \oplus \beta \otimes e_i$, $L_A(\hat{x}) = L_A(x)$.

Tetapi $x_i = \varepsilon < \hat{x} = \beta$, kontradiksi dengan L_A injektif. Jadi terbukti.

Untuk setiap i ada $j=\sigma(i)$ dengan sifat $a_{ji}>\varepsilon$ tetapi $a_{jk}=\varepsilon$ untuk semua $k\neq i$. Dengan kata lain, a_{ji} entri tunggal yang tidak sama dengan ε pada baris $j=\sigma(i)$. Tetapi jika $j=\sigma(i')$ maka i=i'. Dengan kata lain, σ injektif yang berarti σ permutasi. Karena itu, setiap baris j ada sebuah kolom unik i ($j=\sigma(i)$) sehingga a_{ji} entri tunggal yang tidak sama dengan ε . Untuk setiap kolom i dan sebarang baris k dengan $k\neq\sigma(i)$, diketahui $k=\sigma(i)$ untuk beberapa $i'\neq i$. Berarti a_{ki} bukan entri unik non- ε pada baris ke-k, sehingga $a_{ji}=\varepsilon$. Karena itu, entri non- ε tunggal di kolom i. Jadi k adalah matriks diagonal yang dipermutasi,

$$A = P_{\sigma} \otimes D(\lambda_i), \lambda_i = a_{\sigma(i)i} > \varepsilon$$

B. Determinan atas Aljabar Max-Plus

Dalam aljabar linear biasa, telah diketahui bahwa untuk $A \in \mathbb{R}^{n \times n}$, $\det(A) = \sum_p \sigma(p) a_{1p_1} a_{2p_2} \dots a_{np_n}$, dengan p_n adalah himpunan semua permutasi dari $\{1,2,\dots,n\}$ dan $\sigma(p)$ adalah tanda permutasi σ . Determinan atas aljabar max-plus tidak memiliki analog langsung karena tidak memiliki invers aditif. Dua konsep yang terkait yaitu permanen A dan dominan A yang didefinisikan di bawah ini dengan sebagian mengambil alih peran determinan.

Berikut diberikan definisi permanen A dan dominan A.

Definisi 3.4. (Farlow, 2009:23)

Untuk matriks $A \in \mathbb{R}_{\max}^{n \times n}$, permanen A didefinisikan sebagai perm $(A) = \bigoplus_{\sigma \in p_n} \bigotimes_{i=1}^n (a_{i\sigma(i)})$, dengan σ dan p_n adalah himpunan semua permutasi $\{1, 2, ..., n\}$.

Permanen A didefinisikan mirip dengan determinan tetapi semua tanda permutasi σ dihilangkan. Berikut diberikan matriks A berukuran 2×2

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Karena n=2 dan 2!=2, berarti ada 2 permutasi dari (1,2) dengan daftar hasil permutasi dari perm(A) ditunjukkan pada Tabel 2. berikut:

Tabel 2. Daftar Hasil Permutasi n = 2 dari perm(A)

Permutasi	$\bigotimes_{i=1}^n (a_{i\sigma(i)})$
(1,2)	$a_{11} + a_{22}$
(2,1)	$a_{12} + a_{21}$

Sehingga diperoleh,

$$perm(A) = \bigoplus_{\sigma \in p_n} \bigotimes_{i=1}^n (a_{i\sigma(i)})$$
$$= \max\{(a_{11} + a_{22}), (a_{12} + a_{21})\}$$

Berikut diberikan matriks A berukuran 3×3

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Karena n=3 dan 3!=6, berarti ada 6 permutasi dari (1,2,3) dengan daftar hasil permutasi dari perm(A) ditunjukkan pada Tabel 3. berikut:

Tabel 3. Daftar Hasil Permutasi n = 3 dari perm(A)

Permutasi	$\bigotimes_{i=1}^n (a_{i\sigma(i)})$
(1,2,3)	$a_{11} + a_{22} + a_{33}$
(1,3,2)	$a_{11} + a_{23} + a_{32}$
(2,1,3)	$a_{12} + a_{21} + a_{33}$
(2,3,1)	$a_{12} + a_{23} + a_{31}$
(3,1,2)	$a_{13} + a_{21} + a_{32}$
(3,2,1)	$a_{13} + a_{22} + a_{31}$

Sehingga didapat,

$$\begin{aligned} \operatorname{perm}(A) &= \bigoplus_{\sigma \in p_n} \bigotimes_{i=1}^n (a_{i\sigma(i)}) \\ &= \max\{(a_{11} + a_{22} + a_{33}), (a_{11} + a_{23} + a_{32}), (a_{12} + a_{21} + a_{33}), \\ &\qquad \qquad (a_{12} + a_{23} + a_{31}), (a_{13} + a_{21} + a_{32}), (a_{13} + a_{22} + a_{31})\} \end{aligned}$$

Lemma 3.2. (Farlow, 2009:23)

Jika $A \in \mathbb{R}_{\max}^{n \times n}$ invertible maka $perm(A) \neq \varepsilon$.

Bukti:

Matriks *invertible* atas aljabar *max-plus* adalah matriks diagonal yang dipermutasi. Jika *A invertible* maka perm(*A*) hanya hasil *max-plus* dari entri-entri diagonal pada matriks diagonal. Oleh karena itu, jika matriks *A invertible* maka $perm(A) \neq \varepsilon$.

Tetapi perm(A) $\neq \varepsilon$ tidak cukup untuk menjadikan A invertible.

Contoh 3.7:

Diberikan matriks
$$A = \begin{pmatrix} 4 & 2 \\ 7 & 3 \end{pmatrix}$$

perm $(A) = (4 \otimes 3) \oplus (2 \otimes 7)$
= max $\{4 + 3, 2 + 7\}$
= max $\{7,9\}$

 $= 9 \neq \varepsilon$

Tetapi matriks A tidak invertible karena bukan matriks diagonal yang dipermutasi.

Matriks z^A digunakan untuk menggambarkan dominan. Diberikan $A \in \mathbb{R}_{\max}^{n \times n}$ z^A adalah matriks z^A ukuran $n \times n$ dengan entri $z^{a_{ij}}$ dengan z adalah variabel. Berikut definisi khas dom(A)

$$\operatorname{dom}(A) = \begin{cases} \operatorname{eksponen tertinggi pada } \operatorname{det}(z^A), \ \operatorname{jika } \operatorname{det}(z^A) \neq 0 \\ \epsilon &, \ \operatorname{jika } \operatorname{det}(z^A) = 0 \end{cases}$$

dom(A) ditentukan oleh hasil determinan dengan perhitungannya seperti determinan dengan tetap menggunakan tanda permutasi σ tetapi skalar matriks A berupa fungsi eksponensial. Matriks z^A diganti menjadi e^s , sehingga didapat definisi berikut:

Definisi 3.5. (Farlow, 2009: 24)

Diberikan matriks $A \in \mathbb{R}_{\max}^{n \times n}$, matriks e^{sA} memiliki entri $e^{sa_{ij}}$ dengan $a_{ij} \in \mathbb{R}_{\max}$ adalah entri pada A.

$$[e^{sA}]_{ij} = e^{sa_{ij}}$$

Sehingga didapat definisi dom(A) berikut:

$$\mathrm{dom}(A) = \begin{cases} \mathrm{eksponen} \ \mathrm{tertinggi} \ \mathrm{pada} \ \det(e^{sA}), \ \mathrm{jika} \ \det(e^{sA}) \neq 0 \\ \varepsilon \qquad \qquad , \ \mathrm{jika} \ \det(e^{sA}) = 0 \end{cases}$$

Berikut diberikan matriks A berukuran 2×2

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Karena n=2 dan 2!=2, berarti ada 2 permutasi dari (1,2) dengan daftar hasil permutasi dari $det(e^{sA})$ ditunjukkan Tabel 4. berikut:

Tabel 4. Daftar Hasil Permutasi n = 2 dari $det(e^{sA})$

Permutasi	Banyaknya invers	Klasifikasi	$\sigma(p)$	$\bigotimes_{i=1}^n \left(e^{sa_{ij}} \sigma(i) \right)$
(1,2)	0	genap	+	$e^{s(a_{11}+a_{22})}$
(2,1)	1	ganjil	-	$e^{s(a_{12}+a_{21})}$

Sehingga diperoleh,

$$\det(e^{sA}) = e^{s(a_{11} + a_{22})} - e^{s(a_{12} + a_{21})}$$

didapatkan dom(A) dengan ketentuan

$$\mathrm{dom}(A) = \begin{cases} \mathrm{eksponen} \ \mathrm{tertinggi} \ \mathrm{pada} \ \det(e^{sA}), \ \mathrm{jika} \ \det(e^{sA}) \neq 0 \\ \varepsilon \qquad \qquad , \ \mathrm{jika} \ \det(e^{sA}) = 0 \end{cases}$$

Diberikan matriks A berukuran 3×3

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Karena n=3 dan 3!=6, berarti ada 6 permutasi dari (1,2,3) dengan daftar hasil permutasi dari $det(e^{sA})$ ditunjukkan pada Tabel 5. berikut:

Tabel 5. Daftar Hasil Permutasi n = 3 dari $det(e^{sA})$

Permutasi	Banyaknya invers	Klasifikasi	$\sigma(p)$	$\bigotimes_{i=1}^n \left(e^{sa_{ij}} \sigma(i) \right)$
(1,2,3)	0	genap	+	$e^{s(a_{11}+a_{22}+a_{33})}$
(1,3,2)	1	ganjil	-	$e^{s(a_{11}+a_{23}+a_{32})}$
(2,1,3)	1	ganjil	-	$e^{(sa_{12}+a_{21}+a_{33})}$
(2,3,1)	2	genap	+	$e^{s(a_{12}+a_{23}+a_{31})}$
(3,1,2)	2	genap	+	$e^{s(a_{13}+a_{21}+a_{32})}$
(3,2,1)	3	ganjil	_	$e^{s(a_{13}+a_{22}+a_{31})}$

Sehingga diperoleh,

$$\det(e^{sA}) = e^{s(a_{11} + a_{22} + a_{33})} - e^{s(a_{11} + a_{23} + a_{32})} - e^{(sa_{12} + a_{21} + a_{33})}$$

$$+ e^{s(a_{12} + a_{23} + a_{31})} +$$

$$e^{s(a_{13} + a_{21} + a_{32})} - e^{s(a_{13} + a_{22} + a_{31})}$$

didapatkan dom(A) dengan ketentuan

$$\mathrm{dom}(A) = \begin{cases} \mathrm{eksponen} \ \mathrm{tertinggi} \ \mathrm{pada} \ \det(e^{sA}), \ \mathrm{jika} \ \det(e^{sA}) \neq 0 \\ \varepsilon \qquad \qquad , \ \mathrm{jika} \ \det(e^{sA}) = 0 \end{cases}$$

Karena perm(A) adalah nilai diagonal maksimum untuk semua permutasi dari kolom A, maka didapat lemma berikut:

Lemma 3.3. (Farlow, 2009: 24)
$$dom(A) \le perm(A)$$
.

Dari nilai diagonal dapat diartikan $\bigotimes_i^n a_{i\sigma(i)}$ untuk sebarang $\sigma \in p_n$. Hal ini benar karena ketika menghitung dominan bisa terjadi pembatalan yang tidak akan terjadi ketika menghitung permanen. Karena pembatalan, jika $\det(e^{sA}) = 0$ maka $\dim(A)$ dapat menjadi ε .

Contoh 3.8:

Matriks
$$A = \begin{pmatrix} 2 & 5 \\ 4 & 7 \end{pmatrix}$$

 $dom(A) = \varepsilon$
karena $det(e^{sA}) = e^{s(2+7)} - e^{s(5+4)} = e^{s9} - e^{s9} = 0$
 $perm(A) = (2 \otimes 7) \oplus (5 \otimes 4)$
 $= max\{2 + 7,5 + 4\}$
 $= max\{9,9\}$
 $= 9$

Contoh 3.9:

Matriks
$$A = \begin{pmatrix} 2 & 5 \\ 4 & 6 \end{pmatrix}$$

$$dom(A) = 9$$

karena
$$\det(e^{sA}) = e^{s(2+6)} - e^{s(5+4)}$$

$$=e^{s8}-e^{s9}\neq 0$$

perm(A) =
$$(2 \otimes 6) \oplus (5 \otimes 4)$$

= $\max\{2 + 6, 5 + 4\}$
= $\max\{8,9\}$

=9

Berdasarkan contoh 3.8 dan contoh 3.9, maka $dom(A) \le perm(A)$.

Lemma 3.4. (Farlow, 2009: 24)

Jika $A \in \mathbb{R}_{\max}^{n \times n}$ invertible maka dom $(A) \neq \varepsilon$.

Bukti:

Karena A invertible maka A adalah matriks diagonal yang dipermutasi. Sehingga dom(A) adalah hasil max-plus entri-entri diagonal dari matriks diagonal. Jadi $dom(A) \neq \varepsilon$.

Contoh 3.10:

Matriks
$$A = \begin{pmatrix} 2 & 3 \\ 4 & 2 \end{pmatrix}$$

$$dom(A) = 7 > \varepsilon$$
, karena $det(e^{sA}) = e^{s4} - e^{s7} \neq 0$.

Tetapi A bukan matriks *invertible* (tidak dapat dibalik).

Dalam aljabar linear biasa, telah diketahui bahwa A invertible jika dan hanya jika $det(A) \neq 0$. Sedangkan dalam aljabar max-plus, dapat ditemukan matriks A memiliki $det(A) \neq 0$ tetapi matriks A bukan matriks invertible, sehingga matriks invertible dan determinan atas aljabar max-plus tidak sepenuhnya analog dengan aljabar linear.

Lemma 3.5. (Farlow, 2009: 25)

Jika $A \in \mathbb{R}_{max}^{n \times n}$ invertible maka dom(A) = perm(A).

Bukti:

Berdasarkan lemma 3.2 dan lemma 3.4, jika $A \in \mathbb{R}_{\max}^{n \times n}$ invertible maka A adalah matriks diagonal yang dipermutasi. Sehingga dom(A) dan perm(A) adalah hasil \max -plus entri-entri diagonal dari matriks diagonal. Oleh karena itu, dom $(A) \neq \varepsilon$ dan perm $(A) \neq \varepsilon$. Jadi dom $(A) = \operatorname{perm}(A)$.

Contoh 3.11:

Diberikan matriks
$$A = \begin{pmatrix} 2 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & -1 \\ \varepsilon & 1 & \varepsilon \end{pmatrix}$$

A invertible, maka

$$dom(A) = 2 \neq \varepsilon$$

karena
$$\det(e^{sA}) = e^{s(2+\varepsilon+\varepsilon)} - e^{s(2-1+1)} + e^{s(\varepsilon-1+\varepsilon)} - e^{s(\varepsilon+\varepsilon+\varepsilon)} + e^{s(\varepsilon+\varepsilon+1)} - e^{s(\varepsilon+\varepsilon+\varepsilon)}$$

$$= e^{s\varepsilon} - e^{s2} + e^{s\varepsilon} - e^{s\varepsilon} + e^{s\varepsilon} - e^{s\varepsilon} \neq 0$$

$$\operatorname{perm}(A) = (2 \otimes \varepsilon \otimes \varepsilon) \oplus (2 \otimes (-1) \otimes 1) \oplus (\varepsilon \otimes (-1) \otimes \varepsilon)$$

$$\oplus (\varepsilon \otimes \varepsilon \otimes \varepsilon) \oplus (\varepsilon \otimes \varepsilon \otimes 1) \oplus (\varepsilon \otimes \varepsilon \otimes \varepsilon)$$

$$= \max\{2 + \varepsilon + \varepsilon, 2 - 1 + 1, \varepsilon - 1 + \varepsilon, \varepsilon + \varepsilon + \varepsilon, \varepsilon + \varepsilon + 1, \varepsilon + \varepsilon + \varepsilon\}$$

$$= \max\{\varepsilon, 2, \varepsilon, \varepsilon, \varepsilon, \varepsilon\} = 2 \neq \varepsilon$$

Sehingga dom $(A) = perm(A) = 2 \neq \varepsilon$

Dalam aljabar linear biasa, telah diketahui bahwa untuk $A, B \in \mathbb{R}_{\max}^{n \times n}$, $\det(AB) = \det(A)\det(B)$. Tetapi dalam aljabar \max -plus, perhitungan $\dim(A \otimes B)$ dan $\operatorname{perm}(A \otimes B)$ ada kemungkinan $\dim(A \otimes B) \neq \dim(A) \otimes \dim(B)$ dan $\operatorname{perm}(A \otimes B) \neq \operatorname{perm}(A) \otimes \operatorname{perm}(B)$.

Contoh 3.12:

Diberikan matriks
$$A = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 3 & 1 \\ 4 & 1 & 2 \end{pmatrix} \operatorname{dan} B = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 2 & 2 \\ 3 & 1 & 3 \end{pmatrix}$$

Akan dicari dom(A) dan perm(A)

$$dom(A) = 11$$

karena
$$\det(e^{sA}) = e^{s(2+3+2)} - e^{s(2+1+1)} + e^{s(1+1+4)} - e^{s(1+1+2)} + e^{s(4+1+1)} - e^{s(4+3+4)}$$

$$= e^{s7} - e^{s4} + e^{s6} - e^{s4} + e^{s6} - e^{s11} \neq 0$$

$$\text{perm}(A) = (2 \otimes 3 \otimes 2) \oplus (2 \otimes 1 \otimes 1) \oplus (1 \otimes 1 \otimes 4) \oplus (1 \otimes 1 \otimes 2)$$

$$\oplus (4 \otimes 1 \otimes 1) \oplus (4 \otimes 3 \otimes 4)$$

$$= \max\{(2+3+2), (2+1+1), (1+1+4), (1+1+2), (4+1+1), (4+3+4)\}$$
$$= \max\{7,4,6,4,6,11\} = 11$$

Akan dicari dom(B) dan perm(B)

$$dom(B) = 9$$

karena
$$\det(e^{sB}) = e^{s(1+2+3)} - e^{s(1+2+1)} + e^{s(3+2+3)} - e^{s(3+2+3)} +$$

$$e^{s(4+2+1)} - e^{s(4+2+3)}$$

$$= e^{s6} - e^{s4} + e^{s8} - e^{s8} + e^{s7} - e^{s9} \neq 0$$

$$perm(B) = (1 \otimes 2 \otimes 3) \oplus (1 \otimes 2 \otimes 1) \oplus (3 \otimes 2 \otimes 3) \oplus (3 \otimes 2 \otimes 3)$$

$$\oplus (4 \otimes 2 \otimes 1) \oplus (4 \otimes 2 \otimes 3)$$

$$= \max\{(1+2+3), (1+2+1), (3+2+3), (3+2+3), (4+2+3), (4+2+3)\}$$

Sehingga didapat,

$$dom(A) \otimes dom(B) = 11 \otimes 9 = 11 + 9 = 20$$

 $= \max\{6.4.8.8.7.9\} = 9$

$$perm(A) \otimes perm(B) = 11 \otimes 9 = 11 + 9 = 20$$

Selanjutnya akan dicari dom $(A \otimes B)$ dan perm $(A \otimes B)$

$$A \otimes B = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 3 & 1 \\ 4 & 1 & 2 \end{pmatrix} \otimes \begin{pmatrix} 1 & 3 & 4 \\ 2 & 2 & 2 \\ 3 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 5 & 7 \\ 11 & 5 & 5 \\ 5 & 7 & 8 \end{pmatrix}$$

$$dom(A \otimes B) = 25$$

karena
$$\det(e^{sAB}) = e^{s(7+5+8)} - e^{s(7+5+7)} + e^{s(5+5+5)} - e^{s(5+11+8)}$$

$$+ e^{s(7+11+7)} - e^{s(7+5+5)}$$

$$= e^{s20} - e^{s19} + e^{s15} - e^{s24} + e^{s25} - e^{s17} \neq 0$$

$$perm(A \otimes B) = (7 \otimes 5 \otimes 8) \oplus (7 \otimes 5 \otimes 7) \oplus (5 \otimes 5 \otimes 5)$$

$$\oplus (5 \otimes 11 \otimes 8)$$

$$\oplus (7 \otimes 11 \otimes 7) \oplus (7 \otimes 5 \otimes 5)$$

$$= max\{(7+5+8), (7+5+7), (5+5+5), (5+11+8), (7+11+7), (7+5+5)\}$$

$$= max\{20,19,15,24,25,17\}$$

$$= 25$$

Jadi $dom(A \otimes B) \neq dom(A) \otimes dom(B)$ dan $perm(A \otimes B) \neq perm(A) \otimes perm(B)$.

Tetapi kita dapat menyatakan lemma berikut:

Lemma 3.6. ((Farlow, 2009: 26)

Jika $A, B \in \mathbb{R}_{\max}^{n \times n}$ invertible maka $dom(A \otimes B) = dom(A) \otimes dom(B)$ dan $perm(A \otimes B) = perm(A) \otimes perm(B)$.

Contoh 3.13:

Diberikan matriks $A, B \in \mathbb{R}_{\max}^{n \times n}$ invertible, $A = \begin{bmatrix} 2 & \varepsilon \\ \varepsilon & 5 \end{bmatrix}$ dan matriks $B = \begin{bmatrix} \varepsilon & 4 \\ 3 & \varepsilon \end{bmatrix}$.

Akan dicari dom(A) dan perm(A)

$$dom(A) = 7$$

karena
$$det(e^{sA}) = e^{s(2+5)} - e^{s(\varepsilon+\varepsilon)}$$

= $e^{s7} - e^{s\varepsilon} \neq 0$

$$perm(A) = (2 \otimes 5) \oplus (\varepsilon \otimes \varepsilon)$$
$$= \max\{2 + 5, \varepsilon + \varepsilon\}$$
$$= \max\{7, \varepsilon\} = 7$$

Akan dicari dom(B) dan perm(B)

$$dom(B) = 7$$

karena
$$det(e^{sB}) = e^{s(\varepsilon+\varepsilon)} - e^{s(4+3)}$$

$$=e^{s\varepsilon}-e^{s7}\neq 0$$

$$perm(B) = (\varepsilon \otimes \varepsilon) \oplus (4 \otimes 3)$$
$$= \max\{\varepsilon + \varepsilon, 4 + 3\}$$
$$= \max\{\varepsilon, 7\}$$
$$= 7$$

Sehingga didapat,

$$dom(A) \otimes dom(B) = 7 \otimes 7 = 7 + 7 = 14$$

$$perm(A) \otimes perm(B) = 7 \otimes 7 = 7 + 7 = 14$$

Selanjutnya akan dicari dom $(A \otimes B)$ dan perm $(A \otimes B)$

$$A \otimes B = \begin{bmatrix} 2 & \varepsilon \\ \varepsilon & 5 \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & 4 \\ 3 & \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} 2 \otimes \varepsilon \oplus \varepsilon \otimes 3 & 2 \otimes 4 \oplus \varepsilon \otimes \varepsilon \\ \varepsilon \otimes \varepsilon \oplus 5 \otimes 3 & \varepsilon \otimes 4 \oplus 5 \otimes \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus \varepsilon & 6 \oplus \varepsilon \\ \varepsilon \oplus 8 & \varepsilon \oplus \varepsilon \end{bmatrix}$$

$$A \otimes B = \begin{bmatrix} \varepsilon & 6 \\ 8 & \varepsilon \end{bmatrix}$$

Sehingga didapat,

$$dom(A \otimes B) = 14$$

karena
$$det(e^{sAB}) = e^{s(\varepsilon+\varepsilon)} - e^{s(6+8)}$$

= $e^{s\varepsilon} - e^{s14} \neq 0$

$$perm(A \otimes B) = (\varepsilon \otimes \varepsilon) \oplus (6 \otimes 8)$$
$$= \max\{\varepsilon + \varepsilon, 6 + 8\}$$
$$= \max\{\varepsilon, 14\}$$
$$= 14$$

Jadi jika $A, B \in \mathbb{R}_{\max}^{n \times n}$ invertible maka $dom(A \otimes B) = dom(A) \otimes dom(B)$ dan $perm(A \otimes B) = perm(A) \otimes perm(B)$.

Perluasan matriks A invertible dalam aljabar linear ke aljabar max-plus ditunjukkan berikut:

$$(\mathbb{R}, +, \times) \to (\mathbb{R} \cup \{-\infty\}, \bigoplus, \otimes)$$

a. Matriks A invertible dalam aljabar linear

Aljabar linear adalah himpunan \mathbb{R} dilengkapi dengan operasi penjumlahan (+) dan operasi perkalian (×) yang dinotasikan (\mathbb{R} , +,×). Diberikan matriks $A \in \mathbb{R}^{n \times n}$ dengan $[A]_{ij} = a_{ij} \in \mathbb{R}$, $\forall i,j = 1,2,...,n$. Matriks A invertible jika dan hanya jika $\det(A) \neq 0$.

b. Matriks A invertible dalam aljabar max-plus

Aljabar max-plus adalah himpunan $\mathbb{R} \cup \{-\infty\}$ dilengkapi dengan operasi \oplus sebagai operasi maksimum dan \otimes sebagai operasi penjumlahan yang dinotasikan dengan $\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \oplus, \otimes)$. Diberikan matriks $A \in \mathbb{R}_{\max}^{n \times n}$ dengan $[A]_{ij} = a_{ij} \in \mathbb{R}_{\max}, \ \forall i,j = 1,2,...,n$. Jika matriks A invertible maka $dom(A) \neq \varepsilon$ sehingga $det(e^{sA}) \neq 0$. Tetapi jika $det(e^{sA}) \neq 0$ maka belum tentu matriks A invertible.

Sehingga, didapatkan jika matriks A invertible maka determinannya bukan 0.

C. Penyelesaian persamaan linear max-plus $A \otimes C = B$

Berdasarkan cara menentukan subsolusi terbesar untuk menyelesaikan sistem persamaan linear Ax = b yang mempunyai subsolusi terbesar \hat{x} dengan $-\hat{x} = A^t \otimes (-b)$. Jika \hat{x} memenuhi persamaan $A\hat{x} = b$, maka \hat{x} merupakan solusi. Cara ini akan dikembangkan pada penyelesaian sistem persamaan linear max-plus $A \otimes C = B$ untuk menentukan matriks C sehingga memenuhi $A \otimes C = B$.

Persamaan linear max-plus $A \otimes C = B$ dengan matriks $A, B \in \mathbb{R}_{max}^{n \times n}$ adalah matriks persegi. Karena \oplus adalah operasi maksimum dan \otimes adalah operasi penjumlahan, maka didapatkan $A \otimes C \leq B, \forall i, j \in n$, sehingga dapat ditulis:

$$a_{ij} + \hat{c}_{ij} \le b_{ij}$$

$$\Leftrightarrow \quad \hat{c}_{ij} \le b_{ij} - a_{ij}$$

$$\Leftrightarrow \hat{c}_{ij} \leq \min\{b_{ij} - a_{ij}, i, j \in \underline{n}\}$$

$$\Leftrightarrow$$
 $-\hat{c}_{ij} \ge \max\{-b_{ij} + a_{ij}, i, j \in \underline{n}\}$

$$\Leftrightarrow$$
 $-\hat{c}_{ij} \ge \max\{a_{ji} + (-b_{ij}), i, j \in \underline{n}\}$

$$\Leftrightarrow -\hat{\mathcal{C}} = A^t \otimes (-B)$$

Jadi sistem persamaan linear max-plus $A \otimes C = B$ memiliki subsolusi terbesar \hat{C} dengan

$$-\hat{C} = A^t \otimes (-B)$$

Jika \hat{C} memenuhi persamaan $A \otimes \hat{C} = B$, maka \hat{C} merupakan solusi.

Contoh 3.14:

Diberikan matriks
$$A = \begin{bmatrix} 3 & 2 \\ 4 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$

Akan ditentukan matriks C sebagai solusi persamaan:

$$A \otimes C = B$$

$$\begin{bmatrix} 3 & 2 \\ 4 & 7 \end{bmatrix} \otimes \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$

Terlebih dahulu dicari subsolusi terbesar dari persamaan di atas, yaitu:

$$-\hat{c} = A^{t} \otimes (-B)$$

$$= \begin{bmatrix} 3 & 4 \\ 2 & 7 \end{bmatrix} \otimes \begin{bmatrix} -6 & -8 \\ -7 & -9 \end{bmatrix}$$

$$= \begin{bmatrix} -3 \oplus -3 & -5 \oplus -5 \\ -4 \oplus 0 & -6 \oplus -2 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & -5 \\ 0 & -2 \end{bmatrix}$$

Jadi subsolusi terbesarnya adalah

$$\hat{C} = \begin{bmatrix} 3 & 5 \\ 0 & 2 \end{bmatrix}$$

Selanjutnya dapat dicek

$$A \otimes \hat{C} = \begin{bmatrix} 3 & 2 \\ 4 & 7 \end{bmatrix} \otimes \begin{bmatrix} 3 & 5 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \otimes 3 \oplus 2 \otimes 0 & 3 \otimes 5 \oplus 2 \otimes 2 \\ 4 \otimes 3 \oplus 7 \otimes 0 & 4 \otimes 5 \oplus 7 \otimes 2 \end{bmatrix}$$

$$= \begin{bmatrix} 6 \oplus 2 & 8 \oplus 4 \\ 7 \oplus 7 & 9 \oplus 9 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$

Jadi $\hat{C} = \begin{bmatrix} 3 & 5 \\ 0 & 2 \end{bmatrix}$ merupakan solusi tunggal.

 $A \otimes \hat{C} = B$

Sehingga didapat matriks $C = \begin{bmatrix} 3 & 5 \\ 0 & 2 \end{bmatrix}$ yang merupakan penyelesaian sistem persaman di atas.

Cara menentukan subsolusi terbesar dapat diterapkan pada penyelesaian persamaan linear max-plus $A \otimes C = B$ untuk menentukan matriks C sehingga memenuhi $A \otimes C = B$. Pengembangan penggunaan cara ini pada sistem persamaan linear max-plus $A \otimes C = B$ dimaksudkan sebagai langkah pendekatan penyelesaian dalam menerapkan metode ini pada penyelesaian persamaan $A \otimes B = E$ untuk menentukan matriks B invers dari A sehingga memenuhi $A \otimes B = E$.

D. Penyelesaian Invers Matriks atas Aljabar Max-plus

Matriks *invertible* memiliki invers kanan dan invers kiri. Penyelesaian sistem persamaan linear *max-plus* untuk menentukan invers matriks dapat menerapkan cara berikut:

1. Menentukan subsolusi terbesar

a. Penyelesaian Invers Kanan

Berdasarkan penyelesaian sistem persamaan linear max-plus $A \otimes C = B$ dengan menentukan subsolusi terbesar yang memiliki subsolusi terbesar \hat{C} dengan $-\hat{C} = A^t \otimes (-B)$ sehingga didapatkan matriks C yang memenuhi persamaan $A \otimes \hat{C} = B$ maka \hat{C} merupakan solusi. Selanjutnya, cara menentukan subsolusi terbesar akan diterapkan pada penyelesaian sistem persamaan linear max-plus $A \otimes B = E$ untuk menentukan matriks B.

Matriks $A \in \mathbb{R}_{\max}^{n \times n}$ invertible dengan E adalah matriks identitas memiliki invers kanan yaitu matriks B sehingga memenuhi persamaan $A \otimes B = E$. Karena \bigoplus adalah operasi maksimum dan \otimes adalah operasi penjumlahan, didapat $A \otimes B \leq E$, $\forall i, j \in n$, sehingga dapat ditulis:

$$a_{ij} + \hat{b}_{ij} \leq e_{ij}$$

$$\Leftrightarrow \quad \hat{b}_{ij} \le e_{ij} - a_{ij}$$

$$\Leftrightarrow \hat{b}_{ij} \leq \min\{e_{ij} - a_{ij}, i, j \in \underline{n}\}$$

$$\Leftrightarrow$$
 $-\hat{b}_{ij} \ge \max\{-e_{ij} + a_{ij}, i, j \in \underline{n}\}$

$$\Leftrightarrow$$
 $-\hat{b}_{ij} \ge \max\{a_{ii} + (-e_{ij}), i, j \in n\}$

$$\Leftrightarrow -\hat{B} = A^t \otimes (-E)$$

Sistem persamaan linear max-plus $A \otimes B = E$ memiliki subsolusi terbesar \hat{B} dengan

$$-\hat{B} = A^t \otimes (-E)$$

Sehingga didapat matriks \hat{B} yang memenuhi persamaan $A \otimes \hat{B} = E$, maka matriks \hat{B} merupakan solusi tunggal sebagai invers matriks A.

Contoh 3.15:

Diberikan matriks $A \in \mathbb{R}_{\max}^{n \times n}$, $A = \begin{bmatrix} \varepsilon & 7 \\ 4 & \varepsilon \end{bmatrix}$.

A invertible, maka

$$dom(A) = 11 \neq \varepsilon$$

karena
$$det(e^{sA}) = e^{s(\varepsilon+\varepsilon)} - e^{s(4+7)}$$

$$=e^{s\varepsilon}-e^{s11}\neq 0$$

$$perm(A) = (\varepsilon \otimes \varepsilon) \oplus (4 \otimes 7)$$
$$= \max\{\varepsilon + \varepsilon, 4 + 7\}$$
$$= \max\{\varepsilon, 11\}$$
$$= 11 \neq \varepsilon$$

Jadi dom(A) = perm(A) = 11 $\neq \varepsilon$

Akan ditentukan matriks B invers kanan dari A sebagai solusi persamaan:

$$A \otimes B = E$$

$$\begin{bmatrix} \varepsilon & 7 \\ 4 & \varepsilon \end{bmatrix} \otimes B = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$$

Terlebih dahulu dicari subsolusi terbesar dari persamaan $A \otimes B = E$, yaitu:

$$-\hat{B} = A^{t} \otimes (-E)$$

$$= \begin{bmatrix} \varepsilon & 4 \\ 7 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} e & \infty \\ \infty & e \end{bmatrix}$$

$$= \begin{bmatrix} 3 \oplus \infty & e \oplus 4 \\ 7 \oplus e & \infty \oplus e \end{bmatrix}$$

$$= \begin{bmatrix} \infty & 4 \\ 7 & \infty \end{bmatrix}$$

Jadi subsolusi terbesarnya adalah

$$\hat{B} = \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$$

Selanjutnya dapat dicek

$$A \otimes \hat{B} = \begin{bmatrix} \varepsilon & 7 \\ 4 & \varepsilon \end{bmatrix} \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \otimes \varepsilon \oplus 7 \otimes -7 & \varepsilon \otimes -4 \oplus 7 \otimes \varepsilon \\ 4 \otimes \varepsilon \oplus \varepsilon \otimes -7 & 4 \otimes -4 \oplus \varepsilon \otimes \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus e & \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon & e \oplus \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$$

$$A \otimes \hat{B} = E$$

Jadi $\hat{B} = \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$ merupakan solusi tunggal.

Sehingga didapat invers kanan dari matriks A yaitu matriks $B = \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$ yang merupakan penyelesaian sistem persaman di atas.

Contoh 3.16:

Diberikan matriks
$$A \in \mathbb{R}_{\max}^{n \times n}$$
, $A = \begin{bmatrix} \varepsilon & \varepsilon & 3 \\ 2 & \varepsilon & \varepsilon \\ \varepsilon & 5 & \varepsilon \end{bmatrix}$ dengan $E = \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix}$

A invertible, maka

$$dom(A) = 10 \neq \varepsilon$$

karena
$$\det(e^{sA}) = e^{s(\varepsilon+\varepsilon+\varepsilon)} - e^{s(\varepsilon+5+\varepsilon)} + e^{s(2+5+3)} - e^{s(2+\varepsilon+\varepsilon)} + e^{s(\varepsilon+\varepsilon+\varepsilon)} - e^{s(\varepsilon+\varepsilon+3)}$$

$$= e^{s\varepsilon} - e^{s\varepsilon} + e^{s10} - e^{s\varepsilon} + e^{s\varepsilon} - e^{s\varepsilon} \neq 0$$

$$\operatorname{perm}(A) = (\varepsilon \otimes \varepsilon \otimes \varepsilon) \oplus (\varepsilon \otimes 5 \otimes \varepsilon) \oplus (2 \otimes 5 \otimes 3) \oplus (2 \otimes \varepsilon \otimes \varepsilon)$$

$$\oplus (\varepsilon \otimes \varepsilon \otimes \varepsilon) \oplus (\varepsilon \otimes \varepsilon \otimes 3)$$

$$= \max\{\varepsilon + \varepsilon + \varepsilon, \varepsilon + 5 + \varepsilon, 2 + 5 + 3, 2 + \varepsilon + \varepsilon, \varepsilon + \varepsilon + \varepsilon, \varepsilon + \varepsilon$$

$$+ 3\}$$

$$= \max\{\varepsilon, \varepsilon, 10, \varepsilon, \varepsilon, \varepsilon\} = 10 \neq \varepsilon$$
Jadi $\operatorname{dom}(A) = \operatorname{perm}(A) = 10 \neq \varepsilon$

Akan ditentukan matriks B invers kanan dari A sebagai solusi persamaan:

$$A \otimes B = E$$

$$\begin{bmatrix} \varepsilon & \varepsilon & 3 \\ 2 & \varepsilon & \varepsilon \\ \varepsilon & 5 & c \end{bmatrix} \otimes B = \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix}$$

Terlebih dahulu dicari subsolusi terbesar dari persamaan $A \otimes B = E$, yaitu:

$$-\hat{B} = A^{t} \otimes (-E)$$

$$= \begin{bmatrix} \varepsilon & 2 & \varepsilon \\ \varepsilon & \varepsilon & 5 \\ 3 & \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} e & \infty & \infty \\ \infty & e & \infty \\ \infty & \infty & e \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus \infty \oplus e & e \oplus 2 \oplus e & e \oplus \infty \oplus \varepsilon \\ \varepsilon \oplus e \oplus \infty & e \oplus \varepsilon \oplus \infty & e \oplus e \oplus 5 \\ 3 \oplus e \oplus e & \infty \oplus \varepsilon \oplus e & \infty \oplus e \oplus \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \infty & 2 & \infty \\ \infty & \infty & 5 \\ 3 & \infty & \infty \end{bmatrix}$$

Jadi subsolusi terbesarnya adalah

$$\hat{B} = \begin{bmatrix} \varepsilon & -2 & \varepsilon \\ \varepsilon & \varepsilon & -5 \\ -3 & \varepsilon & \varepsilon \end{bmatrix}$$

Selanjutnya dapat dicek

$$A \otimes \hat{B} = \begin{bmatrix} \varepsilon & \varepsilon & 3 \\ 2 & \varepsilon & \varepsilon \\ \varepsilon & 5 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & -2 & \varepsilon \\ \varepsilon & \varepsilon & -5 \\ -3 & \varepsilon & \varepsilon \end{bmatrix}$$

$$=\begin{bmatrix} \varepsilon \otimes \varepsilon \oplus \varepsilon \otimes \varepsilon \oplus 3 \otimes -3 & \varepsilon \otimes -2 \oplus \varepsilon \otimes \varepsilon \oplus 3 \otimes \varepsilon & \varepsilon \otimes \varepsilon \oplus \varepsilon \otimes -5 \oplus 3 \otimes \varepsilon \\ 2 \otimes \varepsilon \oplus \varepsilon \otimes \varepsilon \oplus \varepsilon \otimes -3 & 2 \otimes -2 \oplus \varepsilon \otimes \varepsilon \oplus \varepsilon \otimes \varepsilon & 2 \otimes \varepsilon \oplus \varepsilon \otimes -5 \oplus \varepsilon \otimes \varepsilon \\ \varepsilon \otimes \varepsilon \oplus 5 \otimes \varepsilon \oplus \varepsilon \otimes -3 & \varepsilon \otimes -2 \oplus 5 \otimes \varepsilon \oplus \varepsilon \otimes \varepsilon & \varepsilon \otimes \varepsilon \oplus 5 \otimes -5 \oplus \varepsilon \otimes \varepsilon \end{bmatrix}$$

$$=\begin{bmatrix} \varepsilon \oplus \varepsilon \oplus e & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & e \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus e \oplus \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix}$$

$$A \otimes \hat{B} = E$$

Jadi
$$\hat{B} = \begin{bmatrix} \varepsilon & -2 & \varepsilon \\ \varepsilon & \varepsilon & -5 \\ -3 & \varepsilon & \varepsilon \end{bmatrix}$$
 merupakan solusi.

Sehingga didapat invers kanan dari matriks A yaitu matriks B =

$$\begin{bmatrix} \varepsilon & -2 & \varepsilon \\ \varepsilon & \varepsilon & -5 \\ -3 & \varepsilon & \varepsilon \end{bmatrix}$$
 yang merupakan penyelesaian sistem persaman di atas.

b. Penyelesaian Invers Kiri

Penyelesaian sistem persamaan linear max-plus $A \otimes B = E$ telah dapat diselesaikan dengan cara menentukan subsolusi terbesar, didapat B invers kanan dari A sebagai solusi tunggal. Jika $A \in \mathbb{R}_{\max}^{n \times n}$ invertible, maka A juga memiliki invers kiri yaitu matriks B sehingga memenuhi $B \otimes A = E$. Sehingga matriks B sebagai invers kanan juga merupakan invers kiri dari A.

Contoh 3.17:

Diberikan matriks
$$A \in \mathbb{R}_{\max}^{n \times n}$$
, $A = \begin{bmatrix} \varepsilon & \varepsilon & 3 \\ 2 & \varepsilon & \varepsilon \\ \varepsilon & 5 & \varepsilon \end{bmatrix}$ dengan $E = \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix}$.

A invertible, maka

$$dom(A) = 10$$

$$perm(A) = 10$$

Jadi dom(
$$A$$
) = perm(A) = 10 $\neq \varepsilon$

Akan ditentukan matriks B invers kiri dari A sebagai solusi persamaan:

$$B \otimes A = E$$

$$B \otimes \begin{bmatrix} \varepsilon & \varepsilon & 3 \\ 2 & \varepsilon & \varepsilon \\ \varepsilon & 5 & \varepsilon \end{bmatrix} = \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix}$$

Berdasarkan contoh 3.16 didapat solusi invers kanan dari A yaitu matriks

$$B = \begin{bmatrix} \varepsilon & -2 & \varepsilon \\ \varepsilon & \varepsilon & -5 \\ -3 & \varepsilon & \varepsilon \end{bmatrix}$$
, karena invers kanan juga merupakan invers kiri maka

invers kiri dari
$$A$$
 juga matriks $B = \begin{bmatrix} \varepsilon & -2 & \varepsilon \\ \varepsilon & \varepsilon & -5 \\ -3 & \varepsilon & \varepsilon \end{bmatrix}$.

Selanjutnya dapat dicek

$$B \otimes A = \begin{bmatrix} \varepsilon & -2 & \varepsilon \\ \varepsilon & \varepsilon & -5 \\ -3 & \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & \varepsilon & 3 \\ 2 & \varepsilon & \varepsilon \\ \varepsilon & 5 & \varepsilon \end{bmatrix}$$
$$= \begin{bmatrix} \varepsilon \oplus e \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus e & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \end{bmatrix}$$
$$= \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & e \end{bmatrix}$$

$$B \otimes A = E$$

Jadi didapat solusi invers kiri dari matriks A yaitu matriks $B = \begin{bmatrix} \varepsilon & -2 & \varepsilon \\ \varepsilon & \varepsilon & -5 \\ -3 & \varepsilon & \varepsilon \end{bmatrix}$ yang merupakan penyelesaian sistem persaman di atas.

2. Karakterisasi Invers Matriks

a. Penyelesaian Invers Kanan

Berdasarkan Teorema 3.1., jika $A \in \mathbb{R}^{n \times n}_{\max}$ invertible, A adalah matriks diagonal yang dipermutasi yaitu $A = P_{\sigma} \otimes D(\lambda_i)$ maka A memiliki invers kanan yaitu matriks B sehingga memenuhi $A \otimes B = E$, dengan matriks B dapat ditentukan berikut

$$B = A^{\otimes -1}$$

$$= P_{\sigma^{-1}} \otimes D(-\lambda_i)$$

$$= [P_{\sigma} \otimes D(-\lambda_i)]^T$$

Sehingga didapat matriks B adalah transpose dari invers matriks diagonal yang dipermutasi.

Contoh 3.18:

Diberikan matriks $A \in \mathbb{R}_{\max}^{n \times n}$ dengan $E = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$

$$A = P_{\sigma} \otimes D(\lambda_{i})$$

$$= \begin{bmatrix} \varepsilon & e \\ e & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} 4 & \varepsilon \\ \varepsilon & 7 \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \otimes 4 \oplus e \otimes \varepsilon & \varepsilon \otimes \varepsilon \oplus e \otimes 7 \\ e \otimes 4 \oplus \varepsilon \otimes \varepsilon & e \otimes \varepsilon \oplus \varepsilon \otimes 7 \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus \varepsilon & \varepsilon \oplus 7 \\ 4 \oplus \varepsilon & \varepsilon \oplus \varepsilon \end{bmatrix}$$
$$= \begin{bmatrix} \varepsilon & 7 \\ 4 & \varepsilon \end{bmatrix}$$

Karena A merupakan matriks diagonal yang dipermutasi maka A invertible.

Sehingga didapat perhitungan dom(A) dan perm(A), yaitu

$$\operatorname{dom}(A) = 11 \neq \varepsilon$$

$$\operatorname{karena} \det(e^{sA}) = e^{s(\varepsilon+\varepsilon)} - e^{s(4+7)}$$

$$= e^{s\varepsilon} - e^{s11} \neq 0$$

$$\operatorname{perm}(A) = (\varepsilon \otimes \varepsilon) \oplus (4 \otimes 7)$$

$$= \max\{\varepsilon + \varepsilon, 4 + 7\}$$

$$= \max\{\varepsilon, 11\}$$

Jadi dom $(A) = perm(A) = 11 \neq \varepsilon$

 $= 11 \neq \varepsilon$

Selanjutnya akan ditentukan invers kanan A yaitu matriks B

$$B = [P_{\sigma} \otimes D(-\lambda_{i})]^{T}$$

$$= \begin{bmatrix} \binom{\varepsilon}{e} & e \\ e & \varepsilon \end{bmatrix} \otimes \begin{pmatrix} -4 & \varepsilon \\ \varepsilon & -7 \end{pmatrix} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \varepsilon \otimes -4 & \theta \otimes \varepsilon & \varepsilon \otimes \varepsilon \oplus e \otimes -7 \\ e \otimes -4 & \theta \otimes \varepsilon & e \otimes \varepsilon \oplus \varepsilon \otimes -7 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \varepsilon \oplus \varepsilon & \varepsilon \oplus -7 \\ -4 \oplus \varepsilon & \varepsilon \oplus \varepsilon \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \varepsilon & -7 \\ -4 & \varepsilon \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$$

Selanjutnya dapat dicek

$$A \otimes B = \begin{bmatrix} \varepsilon & 7 \\ 4 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \otimes \varepsilon \oplus 7 \otimes -7 & \varepsilon \otimes -4 \oplus 7 \otimes \varepsilon \\ 4 \otimes \varepsilon \oplus \varepsilon \otimes -7 & 4 \otimes -4 \oplus \varepsilon \otimes \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus e & \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon & e \oplus \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$$

$$A \otimes B = E$$

Jadi didapat invers kanan dari A yaitu matriks $B = \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$.

b. Penyelesaian Invers Kiri

Jika $A \in \mathbb{R}_{\max}^{n \times n}$ invertible, A adalah matriks diagonal yang dipermutasi yaitu $A = P_{\sigma} \otimes D(\lambda_i)$ maka A memiliki invers kiri yaitu matriks B sehingga memenuhi $B \otimes A = E$. Berdasarkan teorema 3.2, telah diketahui invers kanan juga merupakan invers kiri, sehingga matriks invertible memiliki invers kanan dan invers kiri dengan solusi tunggal dengan $A \otimes B = E = B \otimes A$. Sehingga matriks B sebagai invers kanan juga merupakan invers kiri dari A.

Contoh 3.19:

Diberikan matriks $A \in \mathbb{R}_{\max}^{n \times n}$ dengan $E = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$

$$A = P_{\sigma} \otimes D(\lambda_{i})$$

$$= \begin{bmatrix} \varepsilon & e \\ e & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} 4 & \varepsilon \\ \varepsilon & 7 \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon & 7 \\ 4 & \varepsilon \end{bmatrix}$$

Karena A merupakan matriks diagonal yang dipermutasi maka A invertible.

Sehingga didapat perhitungan dom(A) dan perm(A), yaitu

$$dom(A) = 11$$

$$perm(A) = 11$$

Jadi dom(
$$A$$
) = perm(A) = 11 $\neq \varepsilon$

Berdasarkan contoh 3.18 didapat invers kanan dari A yaitu matriks $B = \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$, karena invers kanan juga merupakan invers kiri maka invers kiri dari A juga matriks $B = \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$.

Selanjutnya dapat dicek

$$B \otimes A = \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & 7 \\ 4 & \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \otimes \varepsilon \oplus -4 \otimes 4 & \varepsilon \otimes 7 \oplus -4 \otimes \varepsilon \\ -7 \otimes \varepsilon \oplus \varepsilon \otimes 4 & -7 \otimes 7 \oplus \varepsilon \otimes \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus e & \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon & e \oplus \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$$

$$B \otimes A = E$$

Jadi didapat invers kiri dari A yaitu matriks $B = \begin{bmatrix} \varepsilon & -4 \\ -7 & \varepsilon \end{bmatrix}$.

3. Identifikasi Hasil Penyelesaian

a. Penyelesaian Invers Kanan

Berdasarkan contoh-contoh hasil penyelesaian $A \otimes B = E$ diperoleh

matriks B invers kanan dari matriks A, dapat diidentifikasi bahwa matriks B dapat ditentukan dengan cara berikut:

$$B = A^{\otimes -1} = A^T$$
 dengan $a_{ij} = \begin{cases} -a_{ij}, \text{ jika } a_{ij} \neq \varepsilon \\ \varepsilon, \text{ jika } a_{ij} = \varepsilon \end{cases}$

Contoh 3.20:

Diberikan matriks $A \in \mathbb{R}_{\max}^{n \times n}$ dengan $E = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$

$$A = \begin{bmatrix} 5 & \varepsilon \\ \varepsilon & 2 \end{bmatrix}$$

Karena A merupakan matriks diagonal yang dipermutasi maka A invertible, sehingga

$$dom(A) = 7 \neq \varepsilon$$

karena
$$det(e^{sA}) = e^{s(5+2)} - e^{s(\varepsilon+\varepsilon)}$$

$$=e^{s7}-e^{s\varepsilon}\neq 0$$

$$perm(A) = (5 \otimes 2) \oplus (\varepsilon \otimes \varepsilon)$$
$$= \max\{5 + 2, \varepsilon + \varepsilon\}$$
$$= \max\{7, \varepsilon\}$$

$$=7 \neq \varepsilon$$

Jadi dom(
$$A$$
) = perm(A) = 7 $\neq \varepsilon$

Akan ditentukan matriks B invers kanan dari A sebagai solusi persamaan:

$$A \otimes B = E$$

$$\begin{bmatrix} 5 & \varepsilon \\ \varepsilon & 2 \end{bmatrix} \otimes B = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$$

$$B = A^{\otimes -1} = A^T \text{ dengan } a_{ij} = \left\{ \begin{array}{l} -a_{ij}, \text{ jika } a_{ij} \neq \varepsilon \\ \varepsilon \text{ , jika } a_{ij} = \varepsilon \end{array} \right.$$

Sehingga,

$$B = \begin{bmatrix} -5 & \varepsilon \\ \varepsilon & -2 \end{bmatrix}$$

Selanjutnya dapat dicek

$$A \otimes B = \begin{bmatrix} 5 & \varepsilon \\ \varepsilon & 2 \end{bmatrix} \otimes \begin{bmatrix} -5 & \varepsilon \\ \varepsilon & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \otimes -5 \oplus \varepsilon \otimes \varepsilon & 5 \otimes \varepsilon \oplus \varepsilon \otimes -2 \\ \varepsilon \otimes -5 \oplus 2 \otimes \varepsilon & \varepsilon \otimes \varepsilon \oplus 2 \otimes -2 \end{bmatrix}$$

$$= \begin{bmatrix} e \oplus \varepsilon & \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon & \varepsilon \oplus e \end{bmatrix}$$

$$= \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$$

Jadi didapat invers kanan dari matriks A yaitu matriks $B = \begin{bmatrix} -5 & \varepsilon \\ \varepsilon & -2 \end{bmatrix}$.

b. Penyelesaian Invers Kiri

 $A \otimes B = E$

Matriks $A \in \mathbb{R}_{\max}^{n \times n}$ invertible memiliki invers kiri. Jika diberikan matriks A atas aljabar \max -plus, E adalah matriks identitas, maka matriks B adalah invers kiri dari matriks A sehingga memenuhi $B \otimes A = E$.

Berdasarkan teorema 3.2, telah diketahui matriks A invertible memiliki invers kanan dan invers kiri dengan solusi tunggal dengan $A \otimes B = E = B \otimes A$. Sehingga matriks B sebagai invers kanan juga merupakan invers kiri dari A. Perhitungan invers kanan dari matriks A, yaitu $B = A^t$ dengan $a_{ij} = \begin{cases} -a_{ij}, & \text{jika } a_{ij} \neq \varepsilon \\ \varepsilon & \text{, jika } a_{ij} = \varepsilon \end{cases}$ juga bisa berlaku untuk menentukan invers kiri.

Contoh 3.21:

Diberikan matriks $A \in \mathbb{R}_{\max}^{n \times n}$ dengan $E = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$

$$A = \begin{bmatrix} \varepsilon & 4 \\ 7 & \varepsilon \end{bmatrix}$$

Karena A merupakan matriks diagonal yang dipermutasi maka A invertible, sehingga

$$dom(A) = 11 \neq \varepsilon$$

karena
$$det(e^{sA}) = e^{s(\varepsilon+\varepsilon)} - e^{s(7+4)}$$

$$=e^{s\varepsilon}-e^{s11}\neq 0$$

$$perm(A) = (\varepsilon \otimes \varepsilon) \oplus (7 \otimes 4)$$
$$= \max\{\varepsilon + \varepsilon, 7 + 4\}$$
$$= \max\{\varepsilon, 11\}$$
$$= 11 \neq \varepsilon$$

Jadi dom(
$$A$$
) = perm(A) = 11 $\neq \varepsilon$

Akan ditentukan matriks B invers kiri dari A sebagai solusi persamaan:

$$B \otimes A = E$$

$$B \otimes \begin{bmatrix} \varepsilon & 4 \\ 7 & \varepsilon \end{bmatrix} = \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$$

$$B = A^{\otimes -1} = A^T \text{ dengan } a_{ij} = \begin{cases} -a_{ij}, \text{ jika } a_{ij} \neq \varepsilon \\ \varepsilon \text{ , jika } a_{ij} = \varepsilon \end{cases}$$

Sehingga,

$$B = \begin{bmatrix} \varepsilon & -7 \\ -4 & \varepsilon \end{bmatrix}$$

Selanjutnya dapat dicek

$$B \otimes A = \begin{bmatrix} \varepsilon & -7 \\ -4 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & 4 \\ 7 & \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \otimes \varepsilon & \oplus & -7 \otimes 7 & \varepsilon \otimes 4 \oplus & -7 \otimes \varepsilon \\ -4 \otimes \varepsilon \oplus \varepsilon \otimes 7 & -4 \otimes 4 \oplus \varepsilon \otimes \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus e & \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon & e \oplus \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} e & \varepsilon \\ \varepsilon & e \end{bmatrix}$$

$$B \otimes A = E$$

Jadi didapat invers kiri dari matriks A yaitu matriks $B = \begin{bmatrix} -5 & \varepsilon \\ \varepsilon & -2 \end{bmatrix}$.

Berdasarkan ketiga cara yang telah dibahas, penyelesaian menentukan matriks invers kanan dan invers kiri menggunakan ketiga cara akan dibandingkan sebagai berikut:

Contoh 3.22:

Diberikan matriks $A \in \mathbb{R}_{\max}^{n \times n}$ dengan $E = \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix}$

$$A = P_{\sigma} \otimes D(\lambda_{i})$$

$$= \begin{bmatrix} \varepsilon & e & \varepsilon \\ e & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix} \otimes \begin{bmatrix} 3 & \varepsilon & \varepsilon \\ \varepsilon & 2 & \varepsilon \\ \varepsilon & \varepsilon & 4 \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus 2 \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ 3 \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon & 2 & \varepsilon \\ 3 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & 4 \end{bmatrix}$$

Karena A adalah matriks diagonal yang dipermutasi maka A invertible, sehingga

$$dom(A) = 9 \neq \varepsilon$$

karena
$$\det(e^{sA}) = e^{s(\varepsilon + \varepsilon + 4)} - e^{s(\varepsilon + \varepsilon + \varepsilon)} + e^{s(3 + \varepsilon + \varepsilon)} - e^{s(3 + 2 + 4)} + e^{s(3 + \varepsilon)}$$

$$e^{s(\varepsilon+2+\varepsilon)} - e^{s(\varepsilon+\varepsilon+\varepsilon)}$$

$$= e^{s\varepsilon} - e^{s\varepsilon} + e^{s\varepsilon} - e^{s9} + e^{s\varepsilon} - e^{s\varepsilon} \neq 0$$

$$perm(A) = (\varepsilon \otimes \varepsilon \otimes 4) \oplus (\varepsilon \otimes \varepsilon \otimes \varepsilon) \oplus (3 \otimes \varepsilon \otimes \varepsilon) \oplus (3 \otimes 2 \otimes 4)$$

$$\oplus (\varepsilon \otimes 2 \otimes \varepsilon) \oplus (\varepsilon \otimes \varepsilon \otimes \varepsilon)$$

$$= \max\{\varepsilon + \varepsilon + 4, \varepsilon + \varepsilon + \varepsilon, 3 + \varepsilon + \varepsilon, 3 + 2 + 4, \varepsilon + 2 + \varepsilon, \varepsilon + \varepsilon + \varepsilon\}$$

$$= \max\{\varepsilon, \varepsilon, \varepsilon, 9, \varepsilon, \varepsilon\} = 9 \neq \varepsilon$$

Jadi dom(A) = perm(A) = 9 $\neq \varepsilon$

Akan ditentukan matriks B invers dari A, sebagai invers kanan sekaligus invers kiri dari matriks A.

Cara 1. Menentukan subsolusi terbesar

Terlebih dahulu dicari subsolusi terbesar dari persamaan $A \otimes B = E$, yaitu:

$$-\hat{B} = A^{t} \otimes (-E)$$

$$= \begin{bmatrix} \varepsilon & 3 & \varepsilon \\ 2 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & 4 \end{bmatrix} \otimes \begin{bmatrix} e & \infty & \infty \\ \infty & e & \infty \\ \infty & \infty & e \end{bmatrix}$$

$$= \begin{bmatrix} \varepsilon \oplus \infty \oplus e & e \oplus 3 \oplus e & e \oplus \infty \oplus \varepsilon \\ 2 \oplus \varepsilon \oplus \infty & \infty \oplus \varepsilon \oplus e & \infty \oplus e \oplus \varepsilon \\ \varepsilon \oplus e \oplus \infty & e \oplus \varepsilon \oplus \infty & e \oplus e \oplus 4 \end{bmatrix}$$

$$= \begin{bmatrix} \infty & 3 & \infty \\ 2 & \infty & \infty \\ \infty & \infty & 4 \end{bmatrix}$$

Jadi subsolusi terbesarnya adalah

$$\hat{B} = \begin{bmatrix} \varepsilon & -3 & \varepsilon \\ -2 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix}$$

Cara 2. Karakterisasi invers matriks

$$B = [P_{\sigma} \otimes D(-\lambda_{i})]^{T}$$

$$= \begin{bmatrix} \varepsilon & e & \varepsilon \\ e & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix} \otimes \begin{bmatrix} -3 & \varepsilon & \varepsilon \\ \varepsilon & -2 & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus -2 \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ -3 \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \oplus -4 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \varepsilon & -2 & \varepsilon \\ -3 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \varepsilon & -3 & \varepsilon \\ -2 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix}$$

Cara 3. Identifikasi hasil penyelesaian

$$B = A^{\otimes -1} = A^T \text{ dengan } a_{ij} = \begin{cases} -a_{ij}, \text{ jika } a_{ij} \neq \varepsilon \\ \varepsilon \text{ , jika } a_{ij} = \varepsilon \end{cases}$$

Sehingga,

$$B = \begin{bmatrix} \varepsilon & -3 & \varepsilon \\ -2 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix}$$

Berdasarkan perhitungan dengan ketiga cara didapatkan hasil matriks invers yang sama, yaitu

$$B = \begin{bmatrix} \varepsilon & -3 & \varepsilon \\ -2 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix}$$

Selanjutnya dapat dicek

$$A \otimes B = \begin{bmatrix} \varepsilon & 2 & \varepsilon \\ 3 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & 4 \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & -3 & \varepsilon \\ -2 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix}$$

$$=\begin{bmatrix} \varepsilon \oplus e \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & e \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \end{bmatrix}$$
$$=\begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon \end{bmatrix}$$

$$A \otimes B = E$$

$$B \otimes A = \begin{bmatrix} \varepsilon & -3 & \varepsilon \\ -2 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix} \otimes \begin{bmatrix} \varepsilon & 2 & \varepsilon \\ 3 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & 4 \end{bmatrix}$$
$$= \begin{bmatrix} \varepsilon \oplus e \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \oplus \varepsilon \\ \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon & \varepsilon \oplus \varepsilon \oplus \varepsilon \oplus \varepsilon \end{bmatrix}$$
$$= \begin{bmatrix} e & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & e \end{bmatrix}$$

$$B \otimes A = E$$

Jadi
$$A \otimes B = B \otimes A = E$$

Sehingga didapat matriks $B = \begin{bmatrix} \varepsilon & -3 & \varepsilon \\ -2 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & -4 \end{bmatrix}$ sebagai invers kanan sekaligus

invers kiri dari A.

Jika matriks A invertible maka matriks B adalah invers matriks A dengan solusi tunggal sehingga memenuhi $A \otimes B = B \otimes A = E$. Berdasarkan hasil perhitungan untuk menentukan matriks B, ketiga cara yang diterapkan menghasilkan matriks invers yang sama. Pada proses perhitungan untuk menentukan matriks B dengan membandingkan ketiga cara, didapat cara ketiga

yaitu $B = A^{\otimes -1} = A^T$ dengan $a_{ij} = \begin{cases} -a_{ij}, & \text{jika } a_{ij} \neq \varepsilon \\ \varepsilon & \text{, jika } a_{ij} = \varepsilon \end{cases}$ lebih praktis dan menghemat waktu dibandingkan dengan memakai cara yang lain. Penggunaan cara kedua yaitu $B = [P_\sigma \otimes D(-\lambda_i)]^T$ akan lebih efektif dan efisien jika telah diketahui matriks permutasi dan matriks diagonal yang membentuk matriks A invertible.

Contoh 3.23:

Diberikan matriks $A \in \mathbb{R}_{max}^{n \times n}$ berukuran 5×5 .

$$A = \begin{bmatrix} \varepsilon & 2 & \varepsilon & \varepsilon & \varepsilon \\ 4 & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 1 \\ \varepsilon & \varepsilon & 7 & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & 8 & \varepsilon \end{bmatrix}, \text{ dengan } E = \begin{bmatrix} e & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & e & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & e & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & e & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & e \end{bmatrix}$$

Karena A adalah matriks diagonal yang dipermutasi maka A invertible, sehingga

$$dom(A) = 22 \neq \varepsilon$$

karena $det(e^{sA}) = 22 \neq 0$

$$perm(A) = 22 \neq \varepsilon$$

Jadi dom(
$$A$$
) = perm(A) = 22 $\neq \varepsilon$

didapat matriks B invers dari A, yaitu

$$B = A^{\otimes -1} = A^T \text{ dengan } a_{ij} = \left\{ \begin{array}{l} -a_{ij}, \text{ jika } a_{ij} \neq \varepsilon \\ \varepsilon \quad \text{, jika } a_{ij} = \varepsilon \end{array} \right.$$

$$B = \begin{bmatrix} \varepsilon & -4 & \varepsilon & \varepsilon & \varepsilon \\ -2 & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & -7 & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & -8 \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \end{bmatrix}$$

Selanjutnya dapat dicek

$$A \otimes B = E$$

$$B \otimes A = E$$

Jadi $A \otimes B = B \otimes A = E$.

Sehingga didapat matriks
$$B = \begin{bmatrix} \varepsilon & -4 & \varepsilon & \varepsilon & \varepsilon \\ -2 & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & -7 & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & -8 \\ \varepsilon & \varepsilon & -1 & \varepsilon & \varepsilon \end{bmatrix}$$
 sebagai invers kanan

sekaligus invers kiri dari A.